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Abstract

For agents attempting to learn a user’s interests, the cost of
obtaining labeled training instances is prohibitive because
the user must directly label each training instance, and few
users are willing to do so.  We present an approach that
circumvents the need for human-labeled pages.  Instead, we
learn ‘surrogate’ tasks where the desired output is easily
measured, such as the number of hyperlinks clicked on a
page or the amount of scrolling performed. Our assumption
is that these outputs will highly correlate with the user’s
interests.  In other words, by unobtrusively ‘observing’ the
user’s behavior we are able to learn functions of value.  For
example, an agent could silently observe the user’s browser
behavior during the day, then use these training examples to
learn such functions and gather, during the middle of the
night, pages that are likely to be of interest to the user.
Previous work has focused on learning a user profile by
passively observing the hyperlinks clicked on and those
passed over.  We extend this approach by measuring user
mouse and scrolling activity in addition to user browsing
activity. We present empirical results that demonstrate our
agent can accurately predict some easily measured aspects
of one’s use of his or her browser.

1 Introduction

Much research has been devoted to the task of developing
intelligent agents that can learn a user’s interests (a
‘profile’) and find information in the World Wide Web
(WWW) based on such profiles [e.g., Joachims et al, 1997;
Pazzani et al, 1996].  Given a particular web page or
hyperlink and a particular user, the agent’s task is to predict
the user’s interest level in that page or hyperlink.  If the
agent predicts that the user will be very interested in the

page, such an agent can retrieve this page for later viewing
by the user.

A central question in the topic of learning user profiles
concerns how the learning algorithm obtains training
examples.  Expecting the user to manually rate many pages
is not desirable.  Previous work [Liberman, 1995; Mladenic,
1996] has investigated employing passively recorded user
navigation behavior (i.e. analyzing hyperlinks clicked,
hyperlinks passed over, and patterns of user behavior) as
surrogate measures for predicting user interest in a page.
We extend this work by unobtrusively recording user
navigation behavior and additional user actions (such as
scrolling).  We utilize a combination of these measurement
as a surrogate for user interest in a page.  We hypothesize
(but have not yet tested) that these measurements correlate
well with the user’s true interests.   Since we can collect
these automatically generated training examples during the
user’s normal use of their web browser, our approach allows
for the collection of large training sets without burdening
the user. We demonstrate in this paper that it is feasible to
learn some promising surrogate measurements.

To illustrate how an agent might generate labeled
instances from normal user actions, let us consider an
example.  Imagine an agent watching a user who is
interested in financial information about Internet bookstores.
When the user navigates to a news article about the stock
prices and future prospects of ‘Amazon.com’ and ‘Barnes
and Noble,’ he or she is likely to scroll down the page
reading the article and click on related links after finishing
the article.  Observing that the user performed a large
number of actions on the page, the agent would label the
page as a positive instance of the user’s interests.
Conversely, upon navigating to an article that compares the
book selection and the book reviews at ‘Amazon.com’ and
‘Barnes and Noble,’ the user will likely not read the article,
nor do any scrolling, nor click on any related links on the
page.  Upon observing the relatively few number of actions



performed by the user, the agent would label this web page
as a negative example of the user’s interests.  Thus, without
any direct input from the user, the agent can generate
labeled instances.  Using normal user actions to obtain
labeled training examples is much less costly to the user,
and, as we will discuss below, quite effective in learning a
profile of the user.

In Section 2, we discuss how the agent obtains training
examples and generalizes from these examples.  Sections 3
and 4 discuss the methodology and the results of a cross-
validation study for the agent, while Sections 5 and 6,
respectively, discuss extensions to this research and its
relation to previous research.  Finally, we present some
conclusions.

2 Agent Architecture

In this section we discuss our agent’s architecture.  The
browser used by our agent is Microsoft’s Internet Explorer
4.0; we made the choice to use Internet Explorer  (IE) as
opposed to another browser because the Internet Client SDK
and Microsoft’s Common Object Model (COM ) provide
‘hooks’ that allow a program to observe, record, and
measure a variety of user actions.

Step 1.  When the user visits a web page, record (a) the
HTML contents of the page; and (b) normal actions
performed by the user on the page.

Specifically, the HTML text of the page is the input of the
instance, and the normal user actions are the output of the
training example.  Recording the HTML text of the page is a
straightforward operation. We next consider the normal user
actions recorded by the agent.

 Various user actions that appear likely to correlate with
the user’s interest in a page include the number of
hyperlinks clicked on by the user, the amount of scrolling
the user performed, and whether the user bookmarked the
page.  In fact, our agent does record the number of
hyperlinks clicked by the user for the page.  However, our
agent does not directly utilize the latter two actions, but for
different reasons.  Technology limitations currently prevent
the agent from obtaining an accurate measure of the amount
of scrolling by a user, and although bookmarking a page is
likely the action most highly correlated with user interest in
a page, it is too rare an event for it to be of much use.
However, measuring only one action is unlikely to be
sufficient for an agent to reliably label a web page as either
interesting or uninteresting.  Thus, in addition to recording
the number of links clicked on by the user, our agent records
the level of activity for two other normal actions, which give
the agent additional insight into the level of user interest in a
page.

The first action serves as a surrogate measure of the
amount of scrolling performed by the user on a page, and,
similarly, the second action serves as a surrogate measure
for mouse activity on the page.

The surrogate measure for the amount of scrolling
performed by the user is the number of command-state
changes on the page.  A command-state change is an
internal event in the IE event model that occurs when the
user resizes the IE window, utilizes the Edit menu, or
scrolls.  The vast majority of the command-state changes are
the result of user scrolling, and thus command-state changes
serve as a reliable surrogate for the amount of user-scrolling
activity.

Similarly, status-bar-text changes serve as the surrogate
for mouse activity.  Status-bar-text changes occur when the
user moves the mouse over a hyperlink (the URL of the
hyperlink is displayed in the status bar) or navigates through
a menu (a description of the command pointed to by the
mouse is displayed in the status bar).  Hence, status bar text
changes correlate with mouse activity.

For simplicity, we will refer to these surrogates by the
action that each measures; hence, we will refer to the
agent’s measure of user scrolling and mouse activity.

Thus, when the user navigates to a new page, the agents
records (a) the text of the HTML text; (b) the number of
hyperlinks the user clicked on; (c) the amount of user
scrolling activity; and (d) the amount of user mouse activity.
Of these, (a) creates the input and (b)-(d) constitute the
outputs of our training examples.

When the user returns to a page he or she has previously
visited recently, it is logical that the agent should add the
user actions recorded during this return visit to the user
actions recorded during the previous visit. This makes sense
because often a user navigates back-and-forth to many
pages from a single ‘start’ page, and the user is likely very
interested in this start page.  Creating a new training
example for the page each time and recording only the user
actions for that particular visit does not capture the user’s
true interest in the page in this situation.  Hence, the agent
sums the actions of the user on each page visited over a
finite period of time; the active time for an instance is this
finite period of time during which the user’s actions on a
page are summed together.

Our agent currently uses an active time of twenty (20)
minutes; future work will address means to determine the
optimal active time for a user.  If the user returns to the page
after the active time, a new instance for the page is created
and the actions are again during that instance’s active time.
By employing the concept of an instance active time, the
agent attempts to capture the user’s true interest in a page,
whether the user performs many actions on a page in one
visit or the user revisits a page many times and performs
just a few actions on the page during each visit.

Step 2.  Build labeled training instances from the
information recorded in Step 1 and train on these
instances.

The representation of the information collected by agent
in Step 1 and the method of learning employed by the agent
are highly interdependent.  Hence, we discuss both the
agent’s input vector representation and its learning
algorithm together in this step.



Our agent’s fundamental goal is, given the HTML text of
a web page, to predict the amount of normal user actions on
the page.  In other words, using the learning algorithm, the
agent is to successfully predict the number of hyperlinks the
user will click on, the amount of scrolling action the user
will perform, and the amount of mouse action the user will
do.  Our agent employs a fully connected, three-layer neural
network as its learning algorithm.  Our choice to initially
use a neural network was made largely out of convenience.
We are currently evaluating other learning algorithms for
this task.

Let us now discuss the topology of the neural network.
We base our representation of the web page on the bag-of-
words representation [Salton, 1991]; this representation is
compatible with neural networks and empirically has proven
quite successful in information retrieval [Lang, 1995;
Pazzani et al., 1996; Salton, 1991].  The bag-of-words
representation simply encodes the frequency of ‘keywords’
on a page of HTML and ignores word order.  (We explain
below how we obtain a set of key words and phrases).  This
‘frequency array’ serves as the input to the network.  Often
these frequencies are normalized with respect to their
expected values [e.g., TFIDF; Salton, 1991]; however, we
are not yet performing such normalization in our agent.

Our agent uses an enhanced version of the basic bag-of-
words representation.  We equip our agent with the ability to
handle ‘key phrases,’ which are simply phrases the agent is
to look for as opposed to single words. Our agent can handle
phrases containing up to three words.  The agent simply
treats a key phrase as a long word, and thus it handles
keywords and key phrases in the same manner. Therefore,
the number of input units for the network is the number of
key words and phrases that are used by the agent.

We also make use of the majority of HTML markup tags
to further distinguish the usage and context of the word.  For
example, a keyword found in the title of the document is
given more weight than a keyword found in the body of the
document.  Similarly, keywords that are displayed in
smaller fonts are given slightly less weight than keywords
displayed in larger fonts.

We then employ two types of discounting to enhance the
bag-of-words representation.  The first type of discounting
derives from the law of decreasing returns.  For our
purposes, this law says that the more often a keyword is
seen, the less valuable it is.  Thus, the first time a keyword
is found on a page, its weight is W.  However, the second
time the keyword is found on the page, its weight is
(0.7*W), the third time the word is found its weight is
(0.5*W), and so on.  We refer to this type of discounting as
occurrence discounting.  Occurrence discounting continues
for as many times as the word is found on the page.  Lastly,
we use another discounting method in which we discount
words according to their position on the page relative to the
top of this page.  We will refer to this discounting as
position discounting.  We hypothesize that a keyword is
more valuable if it is near the top of the page versus if the
keyword is near the bottom of the page.  Enhancing the bag-

of-words representation by using key phrases, HTML tags,
occurrence discounting, and position discounting increases
the richness of our input representation for a web page
considerably.

Finally, we address the issue of acquiring keywords for a
particular user.  Numerous means come to mind, such as
analyzing the user’s homepage or examining the text of web
pages visited by the user and using a heuristic function (e.g.,
information gain [Pazzani et al., 1996]) to choose the
keywords from those pages’ text.  The focus of this research
is independent of the means used to choose keywords, and
thus for simplicity in our experiments below the agent is
simply provided with a list of keywords.  A production-
quality agent would require a more sophisticated method of
choosing keywords.

Each of the network output units corresponds to a
particular user action; thus, there are three output units for
the network.  The output unit for hyperlinks clicked
represents the fraction of the page’s hyperlinks that are
clicked.  E.g., a value of 0.1 means that the user clicked
10% of the current page’s hyperlinks.  The outputs units for
scrolling activity and mouse activity represent counts of the
above-described events, scaled by 100.

The number of hidden units, Nh is defined by the
equation:

Nh = (|Input Units| + |Output Units|) / 4.

Finally, we train the network using the standard
backpropagation algorithm.  Once trained, the agent can
now predict, based on the text of the page, the number of
hyperlinks on the page the user will click on, the amount of
scrolling and the amount of mouse activity the user will do.

Thus, we have described how our agent obtains training
instances for its neural network by silently observing the
user browsing the WWW.  We have also discussed how the
agent utilizes these instances to learn a profile of the user.

3 Experimental Methodology

In this section we present a cross-validation experiment that
measures our agent’s accuracy in predicting our three
chosen user actions.  To determine how accurately our agent
can predict these normal user actions, we performed a 10-
fold cross-validation experiment.  For each fold we use
‘early stopping’ when training; 10% of each fold’s training
data is used as a tuning set.  After training is complete, the
agent restores the network that performed best on the tuning
set.  We then record the agent’s accuracy on the fold’s test
set.  We use the root-mean-square method to measure the
accuracy of the agent’s network.
  We now turn to the data used in this study.  The WWW is
a particularly diverse environment, and thus obtaining a
representative sample of web pages from the WWW is not
trivial. Therefore, a short discussion of the type of data used
in this experiment is relevant.  As stated before, we provide



a list of keywords for the agent.  The keywords for this
study were related to machine learning and included such
words and phrases as machine learning, neural network,
C4.5, Q-learning, and Quinlan; in total, we used 107 key
words and phrases. To collect the data, one of us (JG)
browsed the WWW while our agent observed and collected
data.  The browsing attempted to simulate an individual
interested in reading about various topics and research
projects in machine learning; however, browsing was not
performed with any particular questions or issues in mind.
A total of 200 pages were visited; 150 of these pages were
related to machine learning, and the remaining 50 were not.
On each page about one fifth of the hyperlinks were clicked,
there were about 40 scrolling-related events, and there were
about 70 mouse-related events.

Due to the current technological limitations, our agent
cannot obtain instances for pages with frames and/or server-
side scripts.  Hence, most data was collected at academic
websites, which tend not to use these technologies.   An
effort was made to visit a broad range of pages and perform
a number of different navigation actions, including the use
of the forward/back buttons, clicking on ‘dead’ links and
links to download files, and browsing FAQ’s and ftp sites.
Given this information, we argue that the data collected for
this experiment is representative of a ‘real-world’ data
sample that might be obtained from an ordinary user.
Therefore, the results presented in Section 4 are likely
representative of our agent’s performance for a wide class of
users.

4 Experimental Results

In this section, we present and discuss the results of the
cross-validation study described in Section 3.  Table 1
summarizes these results (recall that the average values for
these three measurements were about 0.20, 0.40, and 0.70,
respectively).

Table 1.  Results of cross-validation study described in Section 3.
The agent collected a total of two hundred (200) instances and
used ten (10) train/test folds.    For each fold, the agent set aside
10% of the data as a tuning set for early stopping.  The agent trains
on the train’ (train instances minus tune instances) set for 100
epochs, chooses the network state that performs best on the tune
set, then measures accuracy on the test instances.

    Action Predicted Root Mean Square Error
                                            on Test Sets

   Hyperlinks Clicked       0.07 ±  0.02
   Scrolling Activity       0.05 ±  0.02
   Mouse Activity       0.13 ±  0.03

The data in table 1 shows that the error for predicting
mouse activity was much larger than the error for the other
output units. Although these results could indicate that user
mouse activity on a page does not correlate with the user’s
interest in a page, we hypothesize that the agent’s means of
detecting mouse activity are not yet refined enough.
Therefore the error observed in this experiment might well
be a data-collection error, rather than indicative that this is a
hard property to predict.  Research is ongoing in an effort to
design more accurate means of detecting mouse activity.

Lastly, it is important to remember that the instances
created by the agent are not perfect.  Indirect interpretations
of the user’s actions are most likely less accurate than
directly asking the user for input.  However, our claim is
that this is overcome by the fact that we can collect so many
examples (plus the user is much less burdened).

5 Related Work

As discussed earlier, previous work has focused on
employing user navigation behavior as a surrogate to
measuring user interest in a web page.  Personal Web
Watcher [Mladenic, 1996] and Letizia [Liberman, 1995] are
examples of agents that utilize observed user browsing
patterns to recommend hyperlinks to follow (in the case of
Personal Web Watcher) or pages to view (in the case of
Letizia).  We extended this research by recording user
mouse actions and user scrolling actions.  As the amount of
information available on the WWW continues to expand, it
will become increasing necessary for users to have an
assistance in finding information of interest to them; thus, it
is likely that research on agents such as ours and those
mentioned above will continue to grow.

An active recent topic in machine learning is reducing the
need for labeled examples.  For example, several recent
papers described techniques that augment labeled training
data with unlabeled data [e.g., McCallum & Nigam, 1998;
Miller & Uyar, 1997; Nigam et al, 1998].  Reducing the
need for human labeling is also the main focus of our
project, however our approach is to use surrogate measures
that web browsers and operating systems can easily obtain
without any burden on the user.  This perspective goes back
at least to some of the mid-1980’s work on learning
apprentices [Mitchell et al, 1985].  Learning apprentices
were typically defined as learning by observing normal
human use of software systems, and aimed to avoid the need
for explicit training modes.

6 On-Going and Future Work

A number of questions have arisen from our initial work on
this agent.  We discuss one possible extension of this agent
and discuss an important enhancement to the agent.

We have described above an agent that accurately learns a
user profile by observing the user while he or she is
browsing the WWW.  Let us now briefly summarize our



ongoing work on embedding the above neural network in a
larger system.  A fully autonomous agent would first build a
profile of the user’s interest, as described above, and then
employ this profile in a heuristic search of the WWW to
retrieve pages of interest to the user.

Our agent would greatly benefit from improved methods
for detecting user actions.  The three user actions currently
detected by our agent provide a good ‘first-order’
approximation to the user’s activity on a web page, but one
can imagine much more sensitive methods of recording user
activity.  For instance, we asserted that command-state-
change activity is a good approximation of the amount of
scrolling a user does on a page; however, we can imagine a
much more precise measure of scrolling that records the
exact amount of scrolling by the user.  Similarly, status-bar-
text change is a good approximation to user mouse activity,
but one can imagine must more precise ways of measuring
mouse activity, as well.  However, today’s Internet
technology, including even client-side page scripts
(currently the most sensitive instruments for user activity),
is not yet advanced enough to record this information.  The
most promising approach at the time is to intercept user
actions by using ‘hooks’ into the operating system; it is
possible to intercept scrolling activity and mouse activity
using the Win32 API on Windows NT 4.0. In the future we
would ideally embed the agent inside the web browser
application, as opposed to the agent running as a separate
application as it is currently.  We expect that embedding the
agent into the browser would facilitate considerable
improvement in the agent’s activity detection mechanisms.
Fortunately, the trend in browsers (e. g., Microsoft’s IE 5) is
to provide increasingly more access by programs to the
actions users perform.

We plan to perform experiments on our agent using
human subjects.  For each subject, the agent will collect a
number of instances using the methods discussed in this
paper.  After collecting these instances, the agent will learn
a user profile for the subject from the instances and utilize
the profile in a heuristic search of the WWW for pages of
interest to the subject.  The subject will then rate (i.e., the
subject will assign a number between 0 and 10) the pages
returned by the agent according to his or her interest in
them.  Thus, in this experiment, the agent employs the
learned user profile in a practical task and the agent’s results
are judged using a concrete standard.

Lastly, consider the quality of the instances generated by
our agent.  Future research should address our agent’s
performance with its generated examples relative to its
performance with examples constructed from user-labeled
pages.  Because our approach requires no effort from the
user, a ratio of one hundred automatically generated
examples to one user-labeled example would be acceptable.
That is, assume we train our agent with a N user-labeled
pages and it performs at a certain level L consistently; we
would be happy if our agent had to collect 100 N examples
in order to reach performance level L.

7 Conclusions

We presented and evaluated the design of an agent that
employs a standard neural network to learn a user’s interests
in the WWW.   The key aspect of our system is that it
unobtrusively measures normal actions performed by the
user on a page.  It uses these measurements as a surrogate
for the desirable, but too burdensome to collect,
measurements of the user’s interest level.  Hence, rather
than explicitly labeling the interest level of WWW pages,
users implicitly label web pages by the actions they perform
on them.  Our cross-validation experiment suggests that the
agent can learn to predict, at a high degree of accuracy, the
surrogate measurements of user interest that we
investigated.
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