
A Personal News Agent that Talks, Learns and Explains
Daniel Billsus and Michael J. Pazzani
Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697

+1 (949) 824-3491

dbillsus@ics.uci.edu, pazzani@ics.uci.edu

ABSTRACT
Most work on intelligent information agents has thus far focused
on systems that are accessible through the World Wide Web. As
demanding schedules prohibit people from continuous access to
their computers, there is a clear demand for information systems
that do not require workstation access or graphical user interfaces.
We present a personal news agent that is designed to become part
of an intelligent, IP-enabled radio, which uses synthesized speech
to read news stories to a user. Based on voice feedback from the
user, the system automatically adapts to the user’s preferences and
interests. In addition to time-coded feedback, we explore two
components of the system that facilitate the automated induction
of accurate interest profiles. First, we motivate the use of a multi-
strategy machine learning approach that allows for the induction
of user models that consist of separate models for long-term and
short-term interests. Second, we investigate the use of "concept
feedback", a novel form of user feedback that is based on our
agent's capability to construct explanations for the reasons that
have led to a specific classification. Users can then critique these
explanations which, from a machine learning perspective, allows
for more direct changes to an induced concept than through the
inclusion of additional training examples. We evaluate the
proposed algorithms on user data collected with a prototype of our
system, and assess the performance contributions of the system's
individual components.

Keywords
Information agents, machine learning, user modeling,
human-computer interaction.

1. INTRODUCTION
Research on intelligent information agents, assistants that locate
and retrieve information on behalf of their users, has recently
attracted much attention. Most of this work has focused on agents
accessible through the World Wide Web, and research in this field
has not yet led to the development of interfaces for software
agents that do not require access to a computer workstation.
However, there is a clear demand for such information systems, as

demanding schedules prohibit people from continuous computer
access. Personalized information delivery has not yet made its
way past the World Wide Web today.

The following example motivates the need for personalized
information delivery outside of the World Wide Web. Users A
and B spend a large portion of their day driving. They can listen
to the radio in their cars, but do not have access to any medium
that focuses on information specific to their interests. User A is
primarily interested in business news in order to follow the
current stock market, but he must listen to much unrelated
information. To locate information, he must switch news channels
and pay attention to the time at which broadcasts start. Similarly,
user B must switch news channels to locate information on his
interest in local sports.

One of our goals is to develop a foundation for intelligent
information agents that do not require workstation access.
Specifically, we envision an Internet Protocol (IP) enabled
portable device that reads news stories to a user via a speech
synthesizer. Based on feedback from the user, the system will
automatically adapt to the user’s preferences and assist in
navigating through large information spaces. An interesting aspect
of this device is that users can interrupt the synthesizer at any
point, resulting in time-coded feedback that is not easily available
in text-based applications. A long-term goal based on this
research is the development of an intelligent, IP-enabled car radio
that retrieves information from the Internet, learns about the
driver’s interests, and presents information in a personalized way.
In general, we see IP-enabled appliances and the broadcast of
textual information as an interesting alternative to traditional radio
broadcasts. IP-enabled devices, e.g. radios, could take advantage
of the lower bandwidth requirements of text vs. audio
information, and a large amount of information could be
transferred to these devices in a matter of seconds. Furthermore,
textual representations open up ways to process, evaluate and
recommend information, leading to personalized information
access without the need for access to computer workstations. We
believe that novel information retrieval and machine learning
algorithms, specifically geared towards the characteristics of this
kind of human-computer interaction will be needed to achieve the
desired functionality.

This paper describes the design and features of an information
agent that we currently use as a testbed to collect user data and
evaluate our proposed algorithms. In particular, we describe how
synthesized speech and time-coded feedback differ from more
"traditional" relevance feedback approaches for written text. We
then explain the induction of a detailed user model, and describe
our agent’s ability to revise its induced model through concept
feedback. We evaluate the proposed algorithms on user data

collected with our agent, and assess the individual performance
contributions of the system’s components.

2. SYSTEM OVERVIEW
Building an agent that learns about a user’s interests in daily news
stories poses several challenges. Traditional Information Retrieval
(IR) approaches are not directly applicable to this problem setting,
because they assume the user has a specific, well-defined
information need. In our setting, however, this is not the case. If at
all, the user’s query could be phrased as: “What is new in the
world that I do not yet know about, but should know?”.
Computing satisfactory results for such a query is non-trivial. The
difficulty stems from the range of topics that could interest the
user, and the user’s changing interest in these topics. We must
also take into account that it is the novelty of a story that makes it
interesting. Even though a certain topic might match a user’s
interests perfectly, the user will not be interested in the story if it
has been heard before. Therefore, we need to build a system that
acquires a model of a user’s multiple interests, is flexible enough
to account for rapid interest changes, and keeps track of
information the user knows.

We have implemented a Java Applet that uses Microsoft’s Agent
library to display an animated character, named News Dude, that
reads news stories to the user. The Applet requires Microsoft’s

Internet Explorer 4.0 or newer, and is publicly accessible at
http://www.ics.uci.edu/~dbillsus/NewsDude/. All functions can be
accessed through voice commands, or the web-based user
interface (see Figure 1). Although our ultimate goal is to work
towards a speech-driven agent that does not require graphical user
interfaces, we use the web as a medium that allows us to make the
system available to a large user base for data collection and testing
purposes. Furthermore, we believe that there is a variety of useful
applications for speech-driven agent technology for the web. For
example, a talking news-agent that reacts to voice commands
could prove useful for the visually impaired.

Currently, the agent provides access to stories from six different
news channels: Top Stories, Politics, World, Business,
Technology and Sports. When the user selects a news channel, the
Applet connects to a news site on the Internet (Yahoo!News) and
starts to download stories. Since the Applet is multi-threaded,
stories continue downloading in the background while the
synthesizer is reading, which typically allows filling a queue of
stories to be read without any waiting time. The user can interrupt
the synthesizer at any point and provide feedback for the story
being read. One of the design goals for our system was to provide
a variety of feedback options that go beyond the commonly used
interesting/uninteresting rating options. If we consider an
intelligent information agent to be a personal assistant that

Figure 1: News Dude User Interface

gradually learns about our interests and retrieves interesting
information, it would only be natural to have more informative
ways to communicate our preferences. For example, we might
want to tell the agent that we already know about a certain topic,
or request information related to a certain story. Finally, we would
like to ask the agent for reasons why a certain story was rated as
interesting or uninteresting, just as we would ask a friend about
reasons for a particular recommendation. In summary, the system
supports the following feedback options: interesting, not
interesting, I already know this, tell me more, and explain.

After an initial training phase, the user can ask the agent to
compile a personal news program. The goal of this process is to
compute a sequence of news stories ordered with respect to the
user’s interest model. Figure 2 shows the three system
components: retrieval agent, recommender agent and user
interface. Each individual component runs in its own thread, to
allow retrieving and recommending in the background while the
user listens to stories. The retrieval agent’s task is to connect to a
news site on the Internet, download the latest news stories and
insert them into the local story cache, which is used to queue all
stories that are waiting to receive a relevance score. The
recommender agent takes stories out of the story cache, uses the
current user model to compute a relevance score and inserts the
story into the sorted recommendation queue. When the user
requests a new story, the user interface will take the top element
out of the recommendation queue, and read it to the user. The user
can then provide feedback, which is used to update the current
user model. This results in a system that maintains an ordered
sequence of news stories, inserts new stories into this sequence as
soon as they are evaluated, and always presents the currently
highest-ranked story to the user.

3. TIME-CODED FEEDBACK
Since our agent is designed to operate in environments where
graphical user interfaces are not practical, voice-based operation
is a natural alternative. News stories are read to the user through a
speech synthesizer and the user can interrupt the synthesizer at
any point and provide different forms of feedback, as described in
the previous section. The agent’s goal is to use this feedback to

learn a model of the user’s multiple interests. In order to fully
exploit all the information provided by this kind of feedback, we
need algorithms specifically designed for this task.

There has been a substantial amount of work on learning user
preferences from text documents [5, 10]. In these scenarios, users
rate text documents with respect to their interests and assign either
binary class labels or scores on a certain scale. These labeled
documents can then be used as training examples for a learning
algorithm and the resulting hypothesis can be seen as a user model
that allows classifying new documents. Although a very similar
methodology can be applied to spoken text, it is important to note
that spoken text and time-coded feedback contain additional
information that might facilitate the learning and classification
process. We believe that the point in time a user provides
feedback or interrupts a news story is informative and should be
incorporated into classification algorithms.

Time-coded feedback is incorporated into the classification
process of our current system by using the amount of time a user
has listened to a story as implicit feedback. The underlying
intuition is that users will listen longer to stories they consider
interesting than to stories they are not interested in, and we would
like to capture this form of evidence. In our current
implementation we convert a user's binary rating (interesting vs.
not interesting) into a more fine-grained scale. Scores are
computed according to the following rules. Let pl be the
proportion of a story the user has heard.

If story was rated as uninteresting, score = 0.3 * pl

If story was rated as interesting, score = 0.7 + 0.3 * pl

If user asked for more information, score = 1.0

This scheme assures that stories rated as not interesting always
receive lower scores than stories rated as interesting, but allows
for differentiation between different levels of ratings without
requiring any extra work by the user. Similar techniques for
implicit feedback have previously been studied [7]. Additional
techniques for the use of time-coded feedback are currently under
investigation and are briefly summarized in Section 7.

Internet Retrieval Agent Story Cache

User ModelUser Interface

Recommendation
Queue

Thre ad 1

T hre a d 2

Recommender Agent

Th re a d 3

Figure 2: System Architecture

4. LEARNING A USER MODEL
The specific design of our agent’s user model is motivated by a
number of observations and requirements. First, the model must
be capable of representing a user’s multiple interests in different
topics. Second, the model must be flexible enough to adapt to a
user’s changing interests reasonably quickly, even after a long
preceding training period. Third, the model should take into
account that a user’s information needs change as a direct result of
interaction with information [2]. Surprisingly, this aspect has
received virtually no attention in the IR community. For our
application, we take into account the stories the user has recently
heard, to avoid presenting the same information twice.

The above requirements led to the development of a multi-strategy
learning approach that learns two separate user-models: one
represents the user’s short-term interests, the other represents the
user’s long-term interests. The need for two separate models can
be further substantiated by the specific task at hand, i.e.
classifying news stories. Users typically want to track different
“threads” of ongoing recent events - a task that requires short-term
information about recent events. In addition, users have general
news preferences, and modeling these general preferences may
prove useful for deciding if a new story, which is not related to a
recent rated event, would interest the user. In the following
sections we describe the two models individually, motivate why
they conform to the above requirements, and describe how they
can work together to form a comprehensive user model
appropriate for our purposes.

4.1 Modeling Short-Term Interests
The purpose of the short-term model is two-fold. First, it should
contain information about recently rated events, so that stories
which belong to the same threads of events can be identified.
Second, it should allow for identification of stories that the user
already knows. A natural choice to achieve the desired
functionality is the nearest neighbor algorithm (NN). The NN
algorithm simply stores all its training examples, in our case rated
news stories, in memory. In order to classify a new, unlabeled
instance, the algorithm compares it to all stored instances given
some defined similarity measure, and determines the "nearest
neighbor" or the k nearest neighbors. The class label assigned to
the new instance can then be derived from the class labels of the
nearest neighbors. The utility of the NN algorithm has previously
been explored in other text classification applications [1, 12].

To apply the algorithm to natural language text, we must define a
similarity measure that quantifies the similarity between two text
documents. This is a well-studied problem in Information
Retrieval, and we rely on a commonly used document
representation and an associated similarity measure. We convert
news stories to TF-IDF vectors (term-frequency / inverse-
document-frequency), and use the cosine similarity measure to
quantify the similarity of two vectors [11].

Each rated story is converted to its TF-IDF representation and
then stored in the user model. A score prediction for a new story
is then computed as follows. All stories that are closer than a
threshold t_min to the story to be classified become voting stories.
The predicted score is then computed as the weighted average
over all the voting stories’ scores, where the weight is the
similarity between a voting story and the new story. If one of the
voters is closer than threshold t_max to the new story, the story is

labeled as known, and its computed score is multiplied by a
constant k << 1.0, because the system assumes that the user has
already heard about the event reported in the story. If a story does
not have any voters, the story cannot be classified by the short-
term model at all, and is passed on to the long-term model (see
Section 4.2).

The nearest neighbor based short-term model satisfies our
requirements that a user model be able to represent a user’s
multiple interests, and it can quickly adapt to a user’s novel
interests. The main advantage of the nearest neighbor approach is
that only a single story of a new topic is needed to allow the
algorithm to identify future follow-up stories from the same story
thread. The “tracking” abilities of the nearest neighbor algorithm
have also recently been explored by other researchers in a similar
project [1]. In contrast, most other learning algorithms would
require a large number of training examples to identify a strong
pattern.

4.2 Modeling Long-Term Interests
The purpose of the long-term user model is to model a user’s
general preferences for news stories and compute predictions for
stories that could not be classified by the short-term model. To
achieve this we selected a probabilistic learning algorithm, the
naïve Bayesian classifier [4]. Naïve Bayes has been shown to
perform competitively with more complex algorithms and has
become an increasingly popular algorithm in text classification
applications [9, 10].

We represent news stories as Boolean feature vectors, where each
feature indicates the presence or absence of a word. Not all the
words that appear in news stories are used as features. Since it is
our explicit goal to model a user’s general preferences, we
provide the algorithm with background knowledge by hand-
selecting a set of domain specific features, i. e. words that are
likely to be indicators for commonly recurring themes in daily
news stories. Approximately 200 words were selected, ranging
from countries to crime, disaster, politics, technology, business
and sport related terms. Making the “naïve” assumption that
features, here words, are independent given the class label
(interesting vs. not interesting), the probability of a story
belonging to class j given its feature values, p(classj| f1, f2, … fn)
is proportional to:

∏
n

i
jij classfpclassp)|()(

where p(classj) and p(fi | classj) can be easily estimated from
training data. Specifically, we use the multi-variate Bernoulli
event model formulation of naïve Bayes [9], and compute Bayes-
optimal estimates of p(classj) and p(fi | classj) by straightforward
counting of word and class occurrences in the training data. We
use Laplace smoothing to prevent zero probabilities for
infrequently occurring words. A news story to be classified can
thus be labeled with its probability of belonging to the interesting
class.

Most applications of the multi-variate Bernoulli formulation of
naïve Bayes consider both the presence and absence of words in
text documents as evidence in the probability computation. We
restrict the evidence used to the presence of words, similar to a
naïve Bayes model proposed by Maron [8]. This results in a more
conservative classifier that requires examples classified as class c
to be similar to other examples in class c.

Finally, we would like to prevent the long-term model from
classifying stories that do not contain a sufficient number of
features that are indicators for class membership. More formally,
we require the story to contain at least n features for which
p(f | interesting) > p(f | not interesting) in order to allow a
classification as interesting, and likewise, at least n features for
which p(f | interesting) < p(f | not interesting) in order to allow a
classification as not interesting. In our current implementation we
set n to 3, which means a story must contain at least 3 terms that
are all indicators for the same class.

4.3 A Hybrid User Model
Using a hybrid user model consisting of both a short-term and
long-term model of the user’s interests, a previously unseen news
story is classified as follows:

If story can be classified by short-term model

{
score = weighted average over nearest neighbors

If story is too close to known story
 score = score * SMALL_CONSTANT

}

Else

 If story can be classified by long-term model
 score = probability estimated by naïve Bayes
 Else
 score = DEFAULT_SCORE

In summary, the approach tries to use the short-term model first,
because it allows the user to track news threads that have
previously been rated, and it can label stories as already known. If
the story cannot be classified with the short-term model, the long-
term model is used. If the long-term model decides that the story
does not contain sufficient evidence to be classified, a default
score is assigned. In the current implementation we set the default
score to 0.3, so that stories that cannot be reliably classified do
not appear too high in the recommendation queue, but still receive
a higher score than stories that are classified as not interesting.

5. EXPLAINING RECOMMENDATIONS
One of the goals of our work is to support expressive forms of
dialog between users and the agent that facilitate the acquisition
of a precise user model. This is achieved through the various
feedback options described in previous sections, as well as our
agent’s ability to explain reasons for its recommendations.
Systems that can form explanations for their decisions have a long
history in Artificial Intelligence, especially in the context of
Expert Systems [3]. Explanations can help a user understand the
system’s reasoning and provide a way to verify the validity of a
decision.

Explanation capabilities have not received much attention in the
context of Information Retrieval and software agents. Typically, a
system forms a model of the user’s information need, uses the
model to retrieve relevant items and then presents these items to
the user. While it is common for Information Retrieval systems to
quantify the relevance of located information in the form of a
single score, the user typically does not get any form of
explanation or justification for the computed score.

We believe that an explanation for the main reasons that led to a
specific score might be useful for several reasons. First, an

explanation can help the user decide if he wants to inspect a
located item further. This might be especially useful in the audio
framework of our agent, where users cannot skim located items in
order to briefly assess their relevance. If requested, a short
explanation can help the user decide if he wants to listen to a
story. Second, explanations provide direct insight into the induced
user model. This allows the user to assess whether the specific
aspect of the user model that led to a certain recommendation is
useful for finding relevant information. Therefore, our agent
allows the user to critique the formed explanations in order to
make direct changes to the induced model. We refer to this form
of interaction as “concept feedback”.

5.1 Explanation Construction
The system's recommendations are based on scores computed by
the hybrid user model consisting of separate short-term and long-
term models as described in Section 4. As a consequence,
different forms of explanations are used to summarize reasons for
a story's relevance.

If the story was similar to a previously rated story and therefore
classified by the short-term model, the explanation is based on
proximity to this previously rated story. The agent retrieves the
headline of the closest story in the short-term model that received
the same class label as the story whose explanation is to be
constructed. The retrieved headline can then be used to construct
explanations of the following form:

Explanation Template 1: "This story received a [high | low]
relevance score, because you told me earlier that you were [not]
interested in [closest_headline]"

Likewise, if the system assigns a low relevance score because it
assumes the user is already familiar with the story's content, a
proximity-based explanation of the following form is constructed.

Explanation Template 2: "I think you already know about this,
because I told you earlier that [closest_headline]".

In contrast, if the story was classified by the long-term model to
belong to class c, the system forms an explanation using
the words that influenced the class decision most. For
each feature f appearing in the story, we compute
influencef = log [p(f | c) / p(f | not c)], and determine the n words
with the highest influence value. In our current implementation
we set n to 3, and construct explanations of the following form.

Explanation Template 3: "This story received a [high | low]
relevance score, because it contains the words f1, f2 and f3."

Finally, if the story received a default score, the system explains
that "the story received a default score, because it did not seem to
be related to any previously rated story, and did not contain
enough informative words that would allow classification".

5.2 Concept Feedback
Users respond to the system's explanation with a binary rating
indicating whether the line of reasoning expressed in the
explanation matches their preferences, and is thus useful or not
useful for future recommendations. Since the system's
explanations correspond directly to specific "concepts"
represented in the user model, this form of feedback allows for
direct changes to the induced model. Concept feedback is
therefore significantly different from more traditional relevance
feedback approaches [11], where ratings refer to the relevance of

items, instead of the concepts that were used to classify items. The
underlying intuition for the use of concept feedback is that it
could lead to three potential benefits. First, it might lead to user
models that reflect a user’s preferences more accurately. Second, it
could lead to a reduction of training data needed to achieve a
certain accuracy. Third, it could lead to more flexible user models,
which is very useful in our domain where we assume a user’s
preferences to be unstable.

Depending on the explanation template used to form an
explanation, user feedback affects the learned model in different
ways.

For the proximity-based explanation template 1, we take the
similar story used in the explanation out of the short-term model if
the explanation received negative feedback, or add it a second
time if the explanation received positive feedback. Removing the
story from the short-term model prevents it from contributing to
further misclassifications. This is especially useful in cases where
users decide they no longer want to follow a thread of stories they
have previously rated as interesting. In contrast, adding the story
to the model again allows the story to vote multiple times in future
recommendations.

If the user provides positive feedback for an explanation formed
with the proximity-based explanation template 2, i.e. in cases
where the system assumes that the user already knows a story, the
current content of the user model remains unchanged. However, if
the user provides negative feedback for this explanation, we
increase the threshold t_max (see Section 4.1) by a small constant,
so that future stories are required to be more similar to rated
stories, before they are classified as already known. Likewise,
t_max is reduced if the system classifies a news story as
interesting, and the user indicates that the story has been heard
before.

The agent reacts to feedback for explanations formed with
explanation template 3 by constructing an additional, “artificial”
training example. Since this explanation is used for stories that
were classified based on a set of words that indicate class
membership according to the long-term model, the newly created
training example consists simply of the words f1, f2 and f3 that
were used in the explanation. This new training example is then
added to both, the long-term and short-term model, and its class
label depends on the user’s feedback. The effect of adding the
new example to the long-term model is essentially that the
frequency counters used to determine p(fn|class) are updated,
making future misclassifications based on the same words less
likely. However, adding the example to the short-term model has
a more dramatic effect. Consider the case where the system
explains a high relevance score with the presence of the words
“Internet, Web and Software”. If the user provides positive
feedback for this explanation, the newly created positive training
example containing “Internet, Web and Software” assures that
future stories containing these words will be detected by the short-
term model, causing the story to have a high position in the
recommendation queue, regardless of the remaining information
in the story. Likewise, if the user provides negative feedback for a
story that received a high relevance score due to the words
“President, Congress and Affair”, a negative training example will
be added which causes other stories that contain these words to be
filtered out by the short-term model.

6. EVALUATION
In order to evaluate the recommendation performance of our agent
and to assess the relative performance contributions of its
individual components, we used the web-based agent prototype to
collect user data. Ten users trained the system on a daily basis
over a period ranging from 4 to 8 days, resulting in about 3,000
total rated news stories, i.e. on average 300 stories per user. While
this amount of data might not lead to overall performance
estimates that generalize to other users or different collection
dates, it allows us to analyze the relative performance of the
system’s individual components.

Evaluating the agent’s performance is difficult for several reasons.
First, standard evaluation methodologies commonly used in the
machine learning literature, for example n-fold cross-validation,
are not applicable to this scenario. This is mainly due to the
chronological order of the training examples, which cannot be
presented to the learning algorithm in random order, without
skewing results. Second, if we measure the agent’s performance
on a daily basis, we not only measure the effects of the agent’s
updated user model, but also of the changing distribution of news
stories. Finally, we are trying to approximate a model of user
interests that can be assumed to be neither static nor consistent. A
user going through the same list of stories at a later time might
assign different labels.

We chose to evaluate the agent’s performance as follows. We
divided each user’s data into separate training sessions,
corresponding to the user’s use of the system, i.e. typically one
training session per day. We started to train the algorithm with all
rated examples from the first training session, and compared its
predictions for class labels of stories from the second training
session to the user’s ratings. We then incremented the training set
session by session and measured the agent’s performance on the
following session. Finally, we averaged the results over all users.
This methodology models the way the system is used realistically,
because all training data available up to a certain day was used to
classify stories.

In addition to the system’s classification accuracy, i. e. the
proportion of correctly classified news stories, we used common
Information Retrieval performance measures, precision, recall and
F1 to evaluate the system. It is important to evaluate precision and
recall in conjunction, because it is easy to optimize either one
separately. However, for a classifier to be useful for our purposes
we demand that it be precise as well as have high recall. In order
to quantify this with a single measure, Lewis and Gale [6]
proposed the F-measure, a weighted combination of precision and
recall that produces scores ranging from 0 to 1. Here we assign
equal importance to precision and recall, resulting in the
following definition for F1:

recallprecision

recallprecision
F

+
⋅⋅= 2

1

Figure 3 summarizes the system’s performance averaged over all
users, showing a rapid increase of classification performance
during the first three training sessions. Results for more training
sessions are only available for a subset of the users and therefore
cannot be presented in one plot. However, results for users that
collected data of up to 8 training sessions revealed that
performance seems to increase rapidly during the first few training
sessions and then starts to fluctuate as a result of changing

distributions of daily news stories. Figure 3 also shows the
relative performance of the two user model components. As
expected, the hybrid approach combining a short-term and long-
term user model performs better than each individual approach
with respect to both classification accuracy and the F1 measure.
Further inspection of the achieved performance revealed that the
short-term model tends to have high precision, but low recall. In
contrast, the long-term model has higher recall than the short-term
model, but lower precision. Combining both models allows taking
advantage of both models’ strengths, resulting in higher F1 values
as well as overall classification accuracy.

In order to evaluate the contribution of time-coded feedback, we
converted the time-coded scores to Boolean ratings and measured
the resulting performance difference. Using classification
accuracy and F1, no significant difference could be observed. This
is not surprising if we take into account that these measures only
change if the time-coded information causes individual news
stories to change their class membership. However, time-coded
scores did significantly change the relative order of stories in the
recommendation queue. To assess the magnitude of this effect, we
measured the system’s precision at the top 5 suggestions. The plot
shown in Figure 4 summarizes these results and shows that time-
coded scores led to a precision increase of about 8%.

Finally, we evaluated the effects of concept feedback on the
overall system performance. Since performance differences
depend on the number of concept feedback interactions provided
by users, it is difficult to visualize results in the form of learning
curves. Therefore, we used all training data provided by each user
to predict class labels for the stories from the user’s final training
session. We then measured the resulting performance increase by
adding all concept feedback interactions and averaged the results
over all users. This caused accuracy to increase from 72.5% to
77.1%, and F1 to increase from 60.1% to 64.7%.

7. FUTURE WORK
By taking advantage of the length of time a user listens to a news
story, we have only begun to explore the potential of time-coded
feedback. We are currently exploring approaches where we
modify the text representation of a news story by reweighting the
portion of the story to which the user has actually listened.
Consider the case where a user interrupts a news story after the
first 10 words read and decides to label the message as
uninteresting. Clearly, we should treat the first 10 words, i.e. the
portion of the story the user actually listened to, differently from
the remaining text of the story. Since the user was able to reach a
decision after the first 10 words, we assume that one or more
strong indicators for class membership are among these words.
Since we represent news stories in the form of TF-IDF vectors, it
is possible to artificially modify those weights in order to assign
more weight to words to which the user has listened.

We are currently implementing a user interface specifically aimed
at visually impaired users. While intelligent information filtering
techniques have been used to personalize access to various types
of information available on the Internet, it is surprising that the
potential benefits of these techniques to visually impaired users
have thus far not been explored. Since visually impaired users
cannot easily skim retrieved information to quickly assess
potential relevance, information agents that know about user
preferences and interests could prove invaluable.

8. ACKNOWLEDGMENTS
We would like to thank Daimler-Benz and Sun Microsystems,
Inc. for their generous support. We also thank the users who
trained our system for assistance with this research project.

25

35

45

55

65

1 2 3
Number of Training Sessions

F
1

Hybrid User Model Short-Term Only Long-Term Only

60

65

70

75

80

1 2 3
Number of Training Sessions

A
cc

u
ra

cy

Figure 3: Overall System Performance

5 0

5 5

6 0

6 5

7 0

7 5

1 2 3
N u m b e r o f T ra i n in g S e s s io n s

P
re

ci
si

o
n

 a
t

T
o

p
 5

T im e - C o d e d F e e d b a c k B o o l e a n F e e d b a c k

Figure 4: Effect of Time-Coded Feedback

9. REFERENCES
[1] Allan, J., Carbonell, J.G., Doddington, G., Yamron, J. and

Yang, Y. Topic Detection and Tracking Pilot Study Final
Report, Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, 1998,
Lansdowne, Virginia.

[2] Belkin, N. User Modeling in Information Retrieval,
http://www.scils.rutgers.edu/~belkin/um97oh/, Tutorial
Overheads, Sixth International Conference on User
Modeling, 1997, Chia Laguna, Sardinia.

[3] Cawsey, A. Explanation and Interaction. Cambridge, MA:
The MIT Press, 1992.

[4] Duda, R., and Hart, P. Pattern Classification and Scene
Analysis. John Wiley & Sons, New York, 1973.

[5] Lang, K. NewsWeeder: Learning to filter news. Proceedings
of the Twelfth International Conference on Machine
Learning, Lake Tahoe, CA, 1995, 331–339.

[6] Lewis, D. and Gale, W.A. A sequential algorithm for training
text classifiers. Proceedings of the Seventeenth Annual
International ACM-SIGIR Conference on Research and

Development in Information Retrieval, 1994, London,
Springer Verlag.

[7] Lieberman, H. Letizia: An agent that assists web browsing.
Proceedings of the International Joint Conference on
Artificial Intelligence, Montreal, August 1995, 924–929.

[8] Maron, M. Automatic Indexing: An Experimental Inquiry.
Journal of the Association for Computing Machinery, 1961,
8:404-417.

[9] McCallum, A. and Nigam, K. A Comparison of Event
Models for Naïve Bayes Text Classification. AAAI/ICML-98
Workshop on Learning for Text Categorization. Technical
Report WS-98-05, 1998, AAAI Press.

[10] Pazzani M., and Billsus, D. Learning and Revising User
Profiles: The identification of interesting web sites. Machine
Learning 27, 1997, 313-331.

[11] Salton, G. Automatic Text Processing. Addison-Wesley,
1989.

[12] Yang, Y. An Evaluation of Statistical Approaches to Text
Categorization. Information Retrieval Journal, (to appear).

