Using Secure DisCSP Solvers for
Generalized Vickrey Auctions®

Complete and Stochastic Secure Techniques

Marius C. Silaghi
Florida Institute of Technology
msilaghi @fit.edu

Abstract

Within incentive auctions, several bidders cooperate for clearing a set of offers
or requests formalized by an auctioneer, ensuring that each participant cannot do
better than by inputing his true utility.

We use a distributed weighted constraint satisfaction (DisWCSP) framework
where the actual constraints are secrets that are not known by any agent. They
are defined by a set of functions on the secret inputs from all agents. The solu-
tion is also kept secret and each agent learns just the result of applying an agreed
function on the solution. We show how to apply this framework for modeling
and solving General Vickrey Auctions (GVAs). Solutions based on secure com-
plete algorithms as well as solutions using faster secure stochastic algorithms are
proposed.

1 Introduction

Within incentive auctions, several bidders cooperate for clearing a set of offers or re-
quests formalized by an auctioneer. The allocation mechanism is designed to ensure
that each participant cannot do better than by inputing his true utility. This increases the
social welfare by efficient allocations, and for one item auctions it is proven to have sim-
ilar outcomes as the traditional English Auctions. A previous attempt to solve auctions
using distributed constraint frameworks is described in [SF02], but it did not provide
incentiveness.

A constraint satisfaction problem (CSP) is modeled as a set of variables and a set
of constraints on the possible values of those variables. The CSP problem consists in
finding assignments for those variables with values from their domains such that all
constraints are satisfied. The CSP techniques require every participant to reveal its

*This article is an adapted and improved extract from FIT Technical Report CS-2004-
11 [SilO4a], [SZB04] and 2002,2003, and 2004 patents.

x2
x1

SHE
- =

Figure 1: A constraint between two variables, place (z1) z1€{Paris(P), Quebec(Q)},
and time (z2) xo€{Tuesday(T), Wednesday(W)}. The Os mark rejected tuples.
Le. this constraint allows only the pairs (PW) and (Q,T), and can be written

{(P,W),(Q,T)}.

preferences (e.g. to a trusted server), to compute the solution. Therefore, they apply
only when the participants accept to reveal their preferences to the trusted party.

There exist frameworks and techniques to model and solve distributed CSPs (DisC-
SPs) with privacy requirements, namely when the domains of the variables are private to
agents [YDIK98, MJ0O0], or when the constraints are private to agents [SSHFO00, Sil03,
SRO04].

In this article we present a recent framework [SAZBOS] for the distributed con-
straint satisfaction problems. That framework can model naturally existing dis-
tributed constraint satisfaction problems, and also all necessary steps for incentive auc-
tions [YS03, YS04, Fal04]. The new framework assumes that the constraints are not
necessarily known to absolutely any agent but they are computable from secret inputs,
with known functions. These functions use secret inputs provided securely by the differ-
ent participants. Similarly, the final assignments are secret and each agent can retrieve
just the result of applying some agreed function on the secret solution.

We start introducing formally the CSP problem.

CSP. A constraint satisfaction problem (CSP) is defined by three sets: (X, D, C).
X ={z1,...,xm } is a set of variables and D = { Dy, ..., D;,, } is a set of finite domains
such that z; can take values only from D; = {vi, ..., véi}. C = {¢1,...., 0.} isaset of
constraints. A constraint ¢; limits the legality of each combination of assignments to
the variables of an ordered subset X; of the variables in X, X; C X. An assignment is
a pair (z;, v}) meaning that the variable z; is assigned the value v?,.

A tuple is an ordered set. The projection of a tuple € of assignments over a tuple of
variables X; is denoted €| x; . A solution of a CSP (X,D,(C') is a tuple of assignments, e,
with one assignment for each variable in X such that each ¢i€C is satisfied by ex X,
The search space of a CSP is the Cartesian product of the domains of its variables.
Example 1 In a CSP, one has to find a place (x1) and time (x2) for meeting. x1 is
either Paris (P) or Quebec (Q), i.e. D1={P,Q}. x4 is either Tuesday (T') or Wednes-
day (W), i.e. Do={T,W}. There are two constraints: ¢p1={(P,W),(Q,T)}, and
do={(P,W),(Q,T),(Q,W)}. ¢1 is depicted in Figure 1. The problem is to find val-
ues for x1 and xo satisfying both ¢1 and ¢,.

x|

Figure 2: An arithmetic circuit, ¢ = yz+ (x — z) and f=(xz+yz)g. Each input can be
the secret of some participant. The output may not be revealed to all participants. All
intermediary values remain secret to everybody.

We consider that a set of participants are the source of such CSPs and one has
to find agreements for a solution, from the set of possible alternatives, that satisfies
a set of (secret) requirements of the participants. This view suggests a concept of a
distributed CSP. Several frameworks were proposed so far for Distributed Constraint
Satisfaction [ZM91, CDK91, YSHO02a, MJ00, SAZB05]. Some versions consider that
each agent owns a constraint of the CSP [ZM91, SGM96]. This constraint could model
the private information of the agent [SSHFO0O]. Other versions consider that each agent
owns the domain of a variable while the constraints are shared [YDIK98]. The secret
domains can also model some private constraints of the agent.

We show how to use complete secure distributed weighted CSP solvers for address-
ing GVA. In [SF05] we propose secure stochastic algorithms for solving Distributed
CSPs. We show that (taking some precautions to always explore the same subset of
the search space) such stochastic algorithms can be used to provide an incomplete but
secure solver for large GVA problems.

2 Background

Our techniques here apply only to problems whose constraints and outputs can be rep-
resented as first order logic expressions, or as arithmetic circuits on inputs. Actually,
we proposed a procedure to translate first order logic definitions of constraints/outputs
into arithmetic circuits [SZB04]. In the following we introduce arithmetic circuits and
a short overview of the literature and techniques that made them relevant.

2.1 Secure Arithmetic Circuit Evaluation

Secure multi-party computations can simulate any arithmetic circuit [BOGWS88] or
boolean circuit [Kil88, Gol0O4] evaluation. An arithmetic circuit can be intuitively
imagined as a directed graph without cycles where each node is described either by
an addition/subtraction or by a multiplication operator (see Figure 2). Each leaf is a
constant. In a secure arithmetic circuit evaluation, a set of participants perform the op-
erations of an arithmetic circuit over some inputs, each input being either public or an
(encrypted/shared) secret of one of them. The result of the arithmetic circuit are the
values of some predefined nodes. The protocol can be designed to reveal the result
to only a subset of the agents, while none of them learns anything about intermediary
values. One says that the multi-party computation simulates the evaluation of the arith-
metic circuit. A boolean circuit is similar, just that the leafs are boolean truth values,
false or true, often represented as O and 1. The rest of the nodes are boolean opera-
tors like AND or XOR. A function does not have to be represented in this form to be
solvable using general secure arithmetic circuit evaluation. It only needs to have such
an equivalent representation. For example, the operation Zf: g f(i) is an arithmetic
circuit if B and E are public constants and f(7) is an arithmetic circuit. The same is
true about Hfj: g f(@). Such constructs are useful when designing arithmetic circuits.
Secure protocols for evaluating such circuits use [BOGW88] or oblivious transfer.

Using the techniques for secure addition and multiplication one can build secure
techniques for comparison (cmp(z, y) returning 1 if x < y and 0 otherwise), and for
Kronecker’s delta (0 (x, y) returning 1 if z = y and 0 otherwise).

3 Privacy concepts

Definition 1 ((BOGWS88]) A multi-party computation is t-private if an attacker con-
trolling any at most t participants cannot learn anything from the computation, except
from what can be inferred from its outputs and prior knowledge.

Given secret constraints o the prior knowledge I of the ¢ colluders and a multi-party
computation process II with answer «, the technique is t-private if the probability distri-
bution of the secrets is conditionally independent on II given answer « and knowledge
.

P(o|a,T, 1) = P(o|a,T)

However, many algorithms provide answers « that contain more information than
what is actually needed. We typically decompose « in a desired data o™ and an algo-
rithmic dependent unrequested data &. For DisCSPs the desired data is an assignment
of some variables satisfying constraints, and the unrequested data consists of peculiari-
ties of the used algorithm A (e.g., the solution is the first/last in some known order on
alternatives).

function (S)MPC-DisCSPI(T,(X,D,C))
SHUFFLE(X,D,C) //using the mixnet;
fori=1t0 T do
| Shil=Tpec o)
F=DisCSPI1(T,(X,D,C));
UNSHUFFLE(F); // Unshuffle each vector in F separately;
set solution F to 0 with probability p; //optional (see [Sil05a, SF05]);
return F;

Algorithm 1: Stochastic MPC-DisCSP1 for solving a CSP (X, D, C') with k alternatives
and exploring T alternatives. When T" = | D1 X ... X D,,| then the algorithm is complete.
The function DisCSP1 is the arithmetic circuit in Figure 3.

We say that an algorithm A achieves maximal t-privacy if the probability distribu-
tion of the secrets is conditionally independent on II, .4 and & given requested data o™
and prior knowledge I".

P(o|e, T, 1I, A) = P(o|a”,T)

For distributed CSPs, maximal t-privacy typically implies the return of uniformly
random selected solutions whenever the problem may have more than one solu-
tion [SRO4].

3.1 Overview of MPC-DisCSP1

In [Sil03] we have proposed a polynomial space multi-party computation technique,
called MPC-DisCSP1, that extracts a (non-uniformly) random solution of a distributed
CSP [SR04]. MPC-DisCSP1 is t-private (and can be t-resilient when using the zero-
knowledge proofs in [SilO5b]) and uses general multi-party computation building
blocks.

MPC-DisCSP1 implements DisCSP() in five phases (also see Algorithm 1):

1. Share the secret parameters of the input DisCSP using secret sharing.

2. The shared DisCSP problem is shuffled in a cooperative way, reordering val-
ues (and eventually variables), with a permutation that is not known to any-
body [Sil03, Sil05b].

3. A computation returning the first solution of the DisCSP where the operations
performed by agents are independent of the input secrets (to avoid leaking the
secrets), is executed by simulating arithmetic circuits evaluation. This is shown
in Figure 3.

4. The solution (represented as unary constraints on domains) returned at Step 3
is translated into the initial problem formulation using a transformation that is
inverse of the shuffling at Step 2 [SilO5b].

p(e,P) =] o)

peC
satisfiable(P) = 1-0g(0, > p(e,P))
€i€ler...er]

gi;j(P) = satisfiable(PU{x; = j} Up<; (2 = fi(P)))

| Dy
£i(P) = > ix(g;i(P)*0k(0,> gin(P)))

i=1 k<i

Figure 3: Arithmetic circuit DisCSP1 for a CSP P = (X, D,C). The result is the
vector of vectors {{0x (fi,7)}je[1.|Di|) ic[1..m]- Versions with other primitives appear
in [Sil03, Sil04b]

5. Construct the solution from its secret shares.

It is also possible and very simple to find all solutions [HCNT01]. However, when
only a single solution is needed, this leaks a lot of information. At Step 3, MPC-
DisCSP1 requires a computation whose cost is independent of the input, since otherwise
the users can learn things like: The returned solution is the only one, being found after
unsuccessfully checking all other tuples, all other tuples being infeasible. Since the
computation has to be independent of the problem details, its cost is exponential (at
least as long as nobody proves P=NP).

Note that other alternative techniques are available, notably MPC-DisCSP1 [Sil03],
MPC-DisCSP2 [SM04], MPC-DisCSP3 [Sil04b], and MPC-DisCSP4 [Sil05a]. We will
call them generically MPC-DisCSPx.

In [SMO04] we show how to transform any of these techniques in a solver for dis-
tributed weighted constraint satisfaction, denoted accordingly MPC-DisWCSPx. The
modification consists only in a change to Step 3, namely computing W times (where
W is the number of possible total weights) an arithmetic circuit similar to the one in the
Step 3 of the corresponding MPC-DisCSPx, and performing an additional secure com-
putation integrating their result. Also, for the computation corresponding to a possible
total weight B, the function p(e;, P) is replaced with p(€;, P) = 6k (B, 3_ scc ¢(€))-

3.1.1 Complete versus Stochastic Techniques

The algorithm MPC-DisCSP1 is complete when the parameter 7T’ is set to the size of the
search space. If 7" is smaller than |D; X ... X D,,| then the algorithm is incomplete.
Namely it will return a solution picked randomly from 7" unknown randomly selected

Choice ID: [T s [s Te To [s To Tu J&———

Shuffling by participant 1:

L To Jo Jv o Jo o Jo Jo Jo |

Shuffling by participants...i:

Result vector after shuffling by participant n:
Lo fo Jo o o Ju Jo o [t Jo |

Selection of first solution (2)

Lo To [Jo Jo Jo Jo [o Jo Jo |

Un-shuffling by each participant: P e e e

Result: 7 [o Jo o | [o Jo [t Jo o To]
3 | | 7 D

[0] ¢——

Figure 4: MPC-DisCSP4 using mix-nets

elements of the search space. If no solution exists among those 7' elements then a don'’t
know answer is returned. Note that the time cost of the computation is linear in this
parameter 7' (assuming that the constraints have a bounded arity, limiting the cost of
the shuffle).

As follows, a stochastic algorithm is obtained wherein one can address a problem of
any size in any predefined available amount of time (larger than the time for the shuffle)
by choosing the 7" parameter accordingly. If no solution is found after exploring the
T elements then the returned failure has the meaning don’t know. The obtained algo-
rithm is called secure Stochastic Multi-party Computation for solving DisCSPs (SMPC-
DisCSP1). Similar stochastic algorithms can be obtained from the other versions of
secure DisCSP solvers, based both on mix-nets and arithmetic circuits [SF05].

3.2 Opverview of MPC-DisCSP4

In [Sil05a] we have proposed a multi-party computation technique, called MPC-
DisCSP4, that extracts a uniformly random solution of a distributed CSP.
MPC-DisCSP4 implements DisCSP() in five phases:

1. Share the secret parameters of the input DisCSP using secret sharing. The value
of each publicly possible assignment (allocation in GVA) is securely evaluated
into a vector of shared secrets S.

2. The shared vector S is shuffled in a cooperative way with a permutation that is
not known to anybody [Sil05b].

3. An arithmetic circuit is used to set all shared values in the shuffled S to 0, except
for the first non-zero one.

4. The shared vector obtained at Step 3 is translated into the initial problem formu-
lation using a transformation that is inverse of the shuffling at Step 2 [Sil0O5b].

5. Construct the solution from its secret shares.

In this article we only address multi-party computations without trusted servers. A
family of secure solvers based on trusted servers is proposed in [YSHO02a].

4 Distributed CSPs with constraints secret to everybody

Here we show how a distributed weighted CSP framework can model some famous
WCSP problems, namely optimizations occurring in clearing incentive auctions.

4.1 DisCSPs with constraints secret to anybody

Here we remind the DisCSP framework in [SAZBO05]. It proposes a way to model
distributed CSPs, where a constraint is not (necessarily) a secret known to an agent, or
public, but can also be a secret unknown to all agents.

A Distributed CSP (DisCSP) is defined by six sets (4, X, D, C, I, O) and an arith-
metic structure F'. A={ Ay, ..., A, } isaset of agents. X, D, and the solution are defined
like for CSPs.

I={1,,...,I,} is a set of secret inputs. I; is a tuple of «; secret inputs (defined on a
set F) from the agent A;. Each input I; belongs to F'*:,

Like for CSPs, C' is a set of constraints. There may exist a public constraint in
C, ¢, defined by a predicate ¢¢(€) on tuples of assignments €, known to everybody.
However, each constraint ¢;,7>0, in C' is defined as a set of known predicates ¢; (e, I)
over the secret inputs I, and the tuples e of assignments to all the variables in a set of
variables X;, X; C X.

O={o1, ..., 0, } is the set of outputs to the different agents. o; : Dy X...x D,, — F“i
is a function receiving as parameter a solution and returning w; secret outputs (from F’)
that will be revealed only to the agent A;.

This framework has been experimented successfully for modeling and solving sta-
ble desk-mates problems with 7 participants [SAZBO0S5] (requiring two minutes) and
stable marriages problems with 4 participants [Sil04c] (taking a few seconds).

4.2 Distributed Weighted Constraint Satisfaction Problems

Now let us describe the extension of that framework to Distributed Weighted Satisfac-
tion Problems.

Definition 2 A distributed constraint satisfaction problem (DisWCSP) is defined by six
sets (A, X,D,C,1,0), an arithmetic structure F, and a set of acceptable solution
qualities B, that can be often represented as an interval [By1, Ba|. A={Ay,..., Ay} isa
set of agents. X = {x1,...,xy,} is a set of variables and D = {Dx, ..., Dy, } is a set of
finite domains such that x; can take values only from D; = {vi, e vﬁli }. An assignment
is a pair (z;, v,@) meaning that the variable x; is assigned the value v,i. A tuple is an
ordered set. 1={I,...,I,} is a set of secret inputs. I; is a tuple of «; secret inputs

(defined on a set F) from the agent A;. Each input I; belongs to F. C' = {¢y, ..., ¢.}
is a set of constraints. A constraint ¢; weights the legality of each combination of
assignments to the variables of an ordered subset X; of the variables in X, X; C
X. ¢o is a public constraint defined by a function ¢o(€) on tuples of assignments e,
known to everybody. Each constraint ¢;, 1>0, in C is defined as a known function
¢i(e, I) over the secret inputs I, and the tuples € of assignments to all the variables
in a set of variables X;, X; C X. The projection of a tuple € of assignments over a
tuple of variables X; is denoted €|, . A solution is ex = e%rgxmian > i1 Gile X,), if
€ 1 X n
Soia qbi(e*‘xi) € [B1...Bs). O={o01, ..., 0, } is the set of outputs to the different agents.
0j : I Xx Dy X ... X Dy, — F“i is a function receiving as parameter the inputs and
a solution, and returning w; secret outputs (from F') that will be revealed only to the
agent A;.

Solvers developed in our previous work require that the functions in sets O and C
are input either in first order logic form, or in the form of arithmetic circuits.

The public constraint ¢y can be input into the system using a set of constraints
{d)é, qb%, ...}, and the tuples of assignments accepted by ¢(can be obtained separately by
each agent, when needed, using any systematic search technique that finds all solutions
of a CSP, e.g. backtracking or lookahead algorithms (BT, BM, CBJ, FC, MAC, EMAC,
etc.).

5 Incentive Auctions!

To clear a combinatorial auction according to the (non-incentive) 1! price criteria when
several allocations may be optimal:

1. The participants select as public parameters of the problem a set of variables
X where there is a distinct variable for each item to be sold, and the domain
of each variable is the set of participants that may own the item at the end of
the auction (by winning it or by not selling it). There is a function ¢(e, I) for
each participant A, which associates to each possible tuple € of assignments of
the variables in X, an element of I;, (the bid of Aj, for ¢). The maximum and
minimum value of the sum of the bids B;, By, are also enforced by allocating
ranges of possible bids to each participant.

(Alternatively, variables can be associated to agents and their domain is the bid
for each possible bundle. Public constraints limmit the possible allocations of
bundles to agents.)

2. Each participant decides its secret inputs [(bids) for each tuple defining an al-
location, by taking into account both the items she acquires and the reservation
price of the items she cedes in that allocation.

"Patent Pending.

3. The secret inputs are shared with a secret sharing scheme. The weight of each
publicly permitted constraint ¢y, (bid of each agent) is computed securely (typi-
cally equal to the input).

4. A solution of the DisWCSP is computed with a secure protocol (e.g. MPC-
DisWCSPx) [SM04]. As aresult, a shared secret w; will specify the value of each
variable x; in the selected optimal solution, and wq specifies the total weight of
the selected solution.

5. The chosen allocation and its total price can be revealed by reconstructing the
secrets w; from shares.

To reveal the winner allocation only to the participants involved in it, the par-
ticipants must agree on the functions oy specifying that each participant learns
the allocation of the items that she receives. Also, each participant receives
the shares of the variables for items that she is selling, to learn whom to give
them. Namely, o returns an array such that with m items and n participants,
Vi,0 < ¢ < m, if x; models an item of Ay then ox[i] = =z;, otherwise
orli] = (x; = k). These first order logic predicates are translated in arithmetic
circuits as shown in [SZB04]: (z; = k) (aka dx (x;, k)—Kronecker’s delta) be-
comes m Tt s — 4) [T ii1(i — @;). Other ways of computing
dx (x4, k) are given in [Kil05, DFNTO5].

6. The exact price p, to be paid by each agent A, in this case is the bid
of the agent A, for the solution, and can be made known to a partic-
ipant A; with an output oj[u] = ¢y(ex,I), by the arithmetic circuit:
STy (s TS do). T d) K)o (e D).
where w; is the shared secret specifying the index of x; in the solution and
A(s,d) is a function translating a shared secret s into a vector of shared se-
crets with dimension d+1 having a one at index s and 0 elsewhere (see function
value2unaryconstraintXin [Sil03]). Calling the A function is not needed
when using DisWCSP2, DisWCSP3, or DisWCSP4, since they already have the
result as the vector that is the outcome of unshuffling.

The result is the value of the point product between the vector returned by A and
a vector with the weights (bids) for each tuple, ordered lexicographically.

The previous arithmetic circuit is usable if each agent provided a separate bid
for each possible allocation [Sil02, YS03, NSY04]. Otherwise an appropriate
arithmetic circuit has to be designed that is adapted to select the bid of the winning
solution from the format of the input of the bidder.

For incentive auctions (using Clarke tax, like GVA), one uses the algorithm for 15¢
price auctions as a component where the result is not revealed:

function GVA(T,(X,D,C))

SHUFFLE(X,D,C) //using the mixnet or arithmetic circuits;
for b = By to By do

fori=/t T do

L for j=1ton do

L cjli] =k (b, Z¢eC\{¢j} o(€));

F[b]=DisCSP1(T,(X,D,C));
| Wil = 1—6(2, ¢lil);
W=integrate F'[b] to get w; using technique in [SM04];
for j=1 to n do
| woli] = Yo patom, OW50I0w (0,332, Wlk]);
UNSHUFFLE(W); // Unshuffle each vector in W separately;
for k =1tondo
py. is computed as in Step 6 of 1°¢ price action;
wy[k] = wo — pi;
VCGy = wolk] — wylkl;
reveal allocations w; to interested agents (as in Step 5 of 1%¢ price action);
reveal each Ay its Vickrey-Clarke-Grooves tax VCGy;

Algorithm 2: GVA for an auction represented as a shared CSP (X,D,C).

GVA

e The winning allocation is computed with the algorithm for 15! price auctions

without revealing the results. Namely, at the end of the last step, the price pj
to be paid by each agent Ay is not revealed but it is independantly subtracted
from wq (the shared secret representing the total weight of the solution to
the DisWCSP, as returned by the used MPC-DisWCSPx) obtaining a shared
secret wy[k] = wo — p.

Additional n more maximization processes are run solving the DisWCSP,
each k-th maximization by not considering the bids of the agent Ay, and
recording the obtained wy as wy[k] (skipping the computation of the corre-
sponding allocations, w; for 7 > 0).

Separate shuffling/unshuffling is not needed in used MPC-DisWCSPx pro-
cessing for these additional maximizations, and these computations are
preferably done on the shuffled encoding of the problem used at Step 4 in
the algorithm computing the winning allocation with 15! price criteria.

e The price (Clarke tax) to be paid by each bidder Ay, is given by wo[k] —w{[k].

6 Analysis

We have shown here how to apply secure solvers for Distributed Weighted CSPs to
securely clear incentive auctions (in particular GVA). The computational complexity
for securely clearing a GVA auction with this technique is given by the cost of solving
the DisWCSP, i.e., b times higher than to solve a DisCSP of the same size (where b is
the number of possible total weights — aggregated utilities — for an allocation).

For the n rounds of optimisation for finding wg[k], the cost if nb calls to the satisfi-
able function for ¢ — 1 constraints.

Remark 1 The n runs of the solver for computing the elements of wq k] will add only
O(nb) calls to the satisfiable (P) function, each of them excluding an agent’s
constraint (bids).

Secure Stochastic Techniques One typical way to improve the speed of GVA solvers
is to reduce the number of possible bundles to a small predefined set. When possible
such a technique speeds our secure algorithm since its cost directly depends on this
number (specially when based on MPC-DisCSP4).

Another way of speeding up computations is by using secure stochastic solvers (that
explore only a subset of the search space), as SMPC-DisCSP1. However, to ensure in-
dividual rationality one has to guarantee that all instances of the optimization (for the
computation of each wy|[k]) have to be run using only allocations that were considered
at the computation of the winning allocation. This can be achieved if in the aforemen-
tioned method for solving GVA, the same T is used for all the n computations of the
elements of wy[k].

7 Comparison with related work

There exist many recent algorithms for securely clearing incentive auctions (e.g., [Sil02,
YS03, NSY04, YS04]). The technique in [YS04] is based on dynamic programming
and therefore can be faster. Our technique differentiates itself by the guarantee that the
solution is selected randomly among the optimal allocations. Other techniques did not
use distributed CSPs (except indirectly by our previous technique in [Sil02, NSYO04],
but where the problem of several solutions was not handled).

8 Conclusions

Privacy has been recently stressed in [MJ00, FMWO01, WF02, FMGO02, YSHO02b] as an
important goal in designing algorithms for solving DisCSPs. In this article we have in-
vestigated how versions of old and famous problems, incentive auctions, can be solved
such that the privacy of the participants is guaranteed minimizing even what is leaked
by the selected solution. Incentive auctions are a very intense field of research as ap-
plication of agents and economic theories. Our technique uses secure simulations of

arithmetic circuit evaluations and is therefore information theoretically secure when-
ever no majority of the participants colludes to find the secret of the others, and when
all agents follow the protocol. Since we are restricted to arithmetic circuits, full privacy
is achievable with computational security. We also show how faster but incomplete se-
cure solvers can be provided using the secure stochastic techniques proposed in [SFO5],
namely by making sure that the same subset of the search space is explored by the
different optimization instances performed by the GVA solver.

References

[BOGWS88] M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for

[CDK91]

[DFENTO5]

[FalO4]

[FMGO2]

[FMWO1]

[Gol04]

[HCNT01]

[Kil88]

[Kil05]

[MJOO0]

non-cryptographic fault-tolerant distributed computating. In STOC, pages
1-10, 1988.

Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed con-
straint satisfaction. In Proceedings of IJCAI 1991, pages 318-324, 1991.

I. Damgérd, M. Fitzi, J. B. Nielsen, and T. Toft. How to split a shared
number into bits in constant round and unconditionally secure. Cryptology
ePrint Archive, Report 2005/140, 2005.

B. Faltings. Incentive-compatible social choice. In IAT04, 2004.

B. Faltings and S. Macho-Gonzalez. Open constraint satisfaction. In CP,
2002.

E.C. Freuder, M. Minca, and R.J. Wallace. Privacy/efficiency tradeoffs in
distributed meeting scheduling by constraint-based agents. In Proc. IJCAI
DCR, pages 63-72, 2001.

Oded Goldreich. Foundations of Cryptography, volume 2. Cambridge,
2004.

T Herlea, J. Claessens, G. Neven, F. Piessens, B. Preneel, and B. Decker.
On securely scheduling a meeting. In Proc. of IFIP SEC, pages 183-198,
2001.

J. Kilian. Founding cryptography on oblivious transfer. In Proc. of ACM
Symposium on Theory of Computing, pages 20-31, 1988.

Eike Kiltz. Unconditionally secure constant round multi-party computa-
tion for equality, comparison, bits and exponentiation. Cryptology ePrint
Archive, Report 2005/066, 2005. http://eprint.iacr.orgq.

P. Meseguer and M. Jiménez. Distributed forward checking. In CP’2000
Distributed Constraint Satisfaction Workshop, 2000.

[NSY04]

[SAZBO05]

[SFO2]

[SFO5]

[SGMI6]

[Sil02]

[Sil03]

[Sil04a]

[Sil04b]

[SilO4c]

[SilO5a]

[SilO5b]

[SMO04]

[SRO4]

J. Nzouonta, M.-C. Silaghi, and M. Yokoo. Secure computation for com-
binatorial auctions and market exchanges. In AAMAS, pages 1398-1399,
2004.

M.-C. Silaghi, A. Abhyankar, M. Zanker, and R. Bartak. Desk-mates
(stable matching) with privacy of preferences, and a new distributed csp
framework. In FLAIRS 05, 2005.

M.-C. Silaghi and B. Faltings. Self reordering for security in generalized
english auctions. In AAMAS, July 2002.

M.-C. Silaghi and G. Friedrich. Secure stochastic multi-party computation
for combinatorial problems. Technical Report CS-2005-14, FIT, 2005.

G. Solotorevsky, E. Gudes, and A. Meisels. Algorithms for solving dis-
tributed constraint satisfaction problems (DCSPs). In AIPS96, 1996.

M.-C. Silaghi. An algorithm applicable to clearing combinatorial ex-
changes. Technical Report TR-CS-2002-14, FIT, September 2002.

M.-C. Silaghi. Solving a distributed CSP with cryptographic multi-party
computations, without revealing constraints and without involving trusted
servers. In IJCAI-DCR, 2003.

M.-C. Silaghi. Incentive auctions and stable marriages problems solved
with n/2-privacy of human preferences. Technical Report CS-2004-11,
FIT, 2004.

M.-C. Silaghi. Meeting scheduling system guaranteeing n/2-privacy and
resistant to statistical analysis (applicable to any DisCSP). In 3rd IC on
Web Intelligence, pages 711715, 2004.

M.-C. Silaghi. Secure multi-party computation (SMC) programming lan-
guage. http://www.cs.fit.edu/ msilaghi/SMC/, 2004.

M.-C. Silaghi. Hiding absence of solution for a discsp. In FLAIRS 05,
2005.

M.-C. Silaghi. Zero-knowledge proofs for mix-nets of secret shares and
a version of elgamal with modular homomorphism. Cryptology ePrint
Archive, Report 2005/079, 2005. http://eprint.iacr.org/.

M.-C. Silaghi and D. Mitra. Distributed constraint satisfaction and opti-
mization with privacy enforcement. In 3rd IC on Intelligent Agent Tech-
nology, pages 531-535, 2004.

M.-C. Silaghi and V. Rajeshirke. The effect of policies for selecting the
solution of a DisCSP on privacy loss. In AAMAS, pages 1396-1397, 2004.

[SSHFO00]

[SZB04]

[WF02]

[YDIKO98]

[YSO03]

[YS04]

[YSHO2a]

[YSHO2b]

[ZM91]

M.-C. Silaghi, D. Sam-Haroud, and B. Faltings. Asynchronous search
with aggregations. In Proc. of AAAI2000, pages 917-922, Austin, August
2000.

M.-C. Silaghi, M. Zanker, and R. Bartak. Desk-mates (stable matching)
with privacy of preferences, and a new distributed csp framework. In Proc.

of CP’2004 Immediate Applications of Constraint Programming Work-
shop, 2004.

R.J. Wallace and E.C. Freuder. Constraint-based multi-agent meeting
scheduling: Effects of agent heterogeneity on performance and privacy
loss. In DCR, pages 176-182, 2002.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. The distributed con-
straint satisfaction problem: Formalization and algorithms. /IEEE TKDE,
10(5):673-685, 1998.

M. Yokoo and K. Suzuki. Secure generalized vickrey auction using homo-
morphic encryption. In FC, 2003.

M. Yokoo and K. Suzuki. Generalized Vickrey Auctions without Third-
Party Servers. In FC04, 2004.

M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint
satisfaction: Reaching agreement without revealing private information.
In Proc. of the AAMAS-02 DCR Workshop, Bologna, July 2002.

M. Yokoo, K. Suzuki, and K. Hirayama. Secure distributed constraint
satisfaction: Reaching agreement without revealing private information.
In CP, 2002.

Y. Zhang and A. K. Mackworth. Parallel and distributed algorithms for
finite constraint satisfaction problems. In Proc. of Third IEEE Symposium
on Parallel and Distributed Processing, pages 394-397, 1991.

