
Secure Combinatorial Optimization simulating DFS tree-based

Variable Elimination

Marius-Călin Silaghi

Florida Institute of Technology at Melbourne

Boi Faltings and Adrian Petcu

Swiss Federal Institute of Technology at Lausanne

Abstract

In general, Constraint Optimization Problems (COP)
are NP-hard. Using variable elimination tech-
niques [5, 13] COPs can be solved with computation
that is exponential only in the induced-width of the
constraint graph (given some order on the nodes), i.e.
smaller than n. Orders on nodes allowing for some
parallelism are offered by Depth First Search (DFS)
trees of the constraint graph [3, 13].

Any arithmetic circuit can be compiled into a gen-
eral secure multi-party computation where no par-
ticipant learns anything except for the result [1, 8].
We show in [25] that a secure combinatorial prob-
lem solver must necessarily pick the result randomly
among optimal solutions, to be really secure. We
recently developed SMC [19], the first program-
ming language that translates [1]’s theory into prac-
tice. SMC also supports constraint satisfaction prob-
lems (CSPs), but additional techniques were revealed
needed to offer acceptably efficient support for COPs.
In [24] we proposed arithmetic circuits for solving
COPs but which are exponential in the number of
variables, n, for any constraint graph.

Here we show how to construct an arithmetic cir-
cuit with the complexity properties of DFS-based
variable elimination, and that finds a random optimal
solution for any COP. For forest constraint graphs,
this leads to a linear cost secure solver. Develop-
ing an arithmetic circuit performing the operations
of the dynamic programming step in variable elimi-

1Significant input was received from Benjamin Pflanz.

nation proves to be quite straightforward and similar
to previous work. We encountered a more interesting
scientific challenge in choosing a secure scheme for
the equivalent of the decoding step. The decoding
step consists of traversing the dynamic programming
data structures backward to detect the assignments
that generate the winning alternative. What seems
to be the straightforward arithmetic circuit transla-
tion reveals results before the end of the computation,
compromising security. We show how to develop an
arithmetic circuit comprising all processing until the
end of the computation.

1 Introduction

Combinatorial optimization occurs in many situa-
tions. One important formalism for modeling com-
binatorial optimization is the constraint optimiza-
tion problem (COP). A constraint optimization prob-
lem (X ,D,C) is defined by a set of variables, X =
{x1, ..., xm}, with domains from a corresponding set
D = {D1, ..., Dm}, and a set of weighted constraints
C = {φ0, ..., φm}, each such constraint φi specify-
ing a distinct cost associated with each assignment
of values to a subset Xi of X .

An assignment is a pair 〈xi, v〉 where v ∈ Di. We
will assume that Di = [1..ki]. A solution of the COP
is a tuple of assignments ε with values for each vari-
able in X such that the sum of the weights associ-
ated by the constraints in C to ε is maximized (min-
imized). The Cartesian product of the domains for

1

a set of variables X ′ is denoted ΓX′ . Without loss
of generality we assume that by optimal solution we
understand the solution with maximal weight. If we
denote the projection of a tuple ε on a set of variables
Xi by ε|Xi

, then the solution is:

argmax
ε∈ΓX

∑

φi∈C

φi(ε|Xi
)

A distributed COP (DCOP) arises when some con-
straints are functions of secrets own by some agents
from a set A = {A1, ..., An}. Without loss of gener-
ality we assume that φ0 is the only public constraint
and that Xm, the set of variables in φm, contains be-
sides xm only variables xi with i < m. Note that
such a formulation can be obtained from any DCOP
by building a Depth First Search (DFS) tree, intro-
duced later and composing the constraints such that
there remains a single constraint per variable (with
her ancestors in the tree).

Our work employs the following secure multi-party
computation techniques:

• polynomial secret sharing [15]: Each partici-
pant k out of n participants receives 〈s〉tk =

s+
∑t

i=1
aik

i, where ai is a secret random num-
ber. The secret can be reconstructed with the
collaboration of t + 1 participants using s =∑t+1

k=1
lk,t〈s〉tk, where lk,t are the corresponding

Lagrange coefficients.

• addition of shared secrets [1]: 〈s1 + s2〉tk =
〈s1〉tk + 〈s2〉tk

• resharing shared secrets [1]: To reshare a shared
secret 〈s〉t with another threshold t′, each share
〈s〉tk is also shared with (t′, n)-polynomial shar-

ing scheme, and 〈s〉t
′

k is constructed with 〈s〉t
′

k =∑t+1

i=1
li,t〈〈s〉

t
i〉

t′

k .

• multiplication of shared secrets [1]: 〈s1 ∗ s2〉2t
k =

〈s1〉tk ∗ 〈s2〉tk.

• arithmetic circuit evaluation with additive secret
sharing [8]: Each participant k, k > 1 out of
n participants receives [s]k = ai where ai is a
random number. Participant 1 gets [s]1 = s −∑n

i=2
ai. The secret could be reconstructed with

s =
∑n

k=1
[s]k. Addition of additively shared se-

crets is done with [s1 + s2]k = [s1]k +[s2]k. Mul-
tiplication is done using oblivious transfers [8].

• secure test [4]: δ(x) returns 1 if x = 0 and 0
otherwise.

• secure Kronecker’s δ [9, 4]: δK(x, y) = δ(x − y)
returns 1 if x = y and 0 otherwise.

• secure comparison [4]: cmp(x, y) returns 0 if x <

y and 1 otherwise.

• secure max: max(x, y) = cmp(x, y) ∗ (x− y)+ y.

2 Background

DCOPs have been addressed with various techniques
that differ both in efficiency and in their privacy guar-
antees. Previous techniques seeking the strongest
privacy guarantees are based on secure multi-party
computation and scan several times the whole search
space, i.e. Cartesian product of domains in D, once
for each possible total weight [24]. An optimiza-
tion protocol specialized on generalized Vickrey auc-
tions and based on dynamic programming is pro-
posed in [27] and is significantly more efficient, but
does not randomize the selection of the solution,
needed for reaching the highest level of privacy [25].
DPOP, a dynamic programming algorithm for solv-
ing (D)COPs was proposed in [13] and consists of a
Viterbi-like combination of a maximization and de-
coding [26]. The algorithm in [13] can also be seen
as a clever heuristic for variable elimination [5], or as
a parallelization of ADOPT [11], and is based on a
different concept of privacy [22].

2.1 Variable Elimination

Variable Elimination is a principled technique for
complexity reduction in COPs. It consists of replac-
ing all the constraints (objective functions) linked to
a variable chosen for elimination by the projection
of their composition on the remaining variables. A
heuristic for selecting the variables to be eliminated
next is provided by the DFS tree [13].

2

2.2 DFS tree

The primal graph of a COP is the graph having the
variables as nodes and having an arc for each pair of
variables linked by a constraint [6]. A Depth First
Search (DFS) tree associated to a COP is a spanning
tree generated by the arcs used for visiting once each
node during some depth first traversal of its primal
graph. DFS trees were first successfully used for Dis-
tributed Constraint problems in [3]. The property
exploited there is that separate branches of the DFS-
tree are completely independent once the assignments
of common ancestors are decided. Two examples of
DFS trees for a COP primal graph are shown in Fig-
ure 1.

Definition 1 (neighbor nodes) The nodes di-
rectly connected to a node in a primal graph are said
to be its neighbors.

In Figure 1.a, the neighbors of x3 are {x1, x5, x4}.

Definition 2 (ancestor nodes) The ancestors of
a node are the nodes on the path between it and the
root of the DFS tree, inclusively.

In Figure 1.b, the ancestors of x2 are {x5, x3}, while
x3 has no ancestors.

Definition 3 (descendants nodes) The descen-
dants of a node are its children in the DFS tree, as
well as the children of any other of its descendants.

In Figure 1.c, the descendants of x3 are {x1, x4, x2},
while x2 has no descendants.

A neighboring ancestor of a node is any node that is
both a neighbor in the primal graph and an ancestor
in the used DFS tree. Considering the DFS tree as a
reverse order on the constraint graph, we adapt the
typical definition of the induced width [6] as follows.
The induced width of a node x in the DFS tree is
the number of ancestors that are neighboring x or
some of its descendants. The induced width of a DFS
tree is given by the maximum induced width of all
its nodes. Several heuristics had been used in the
past for building DFS trees with reduced width, a
preferred optimal technique consisting of a branch &
bound procedure.

We use the following notation. Let:

• Fx be the parent of x (in Figure 1.b Fx5
= x3).

If x is the root node of the tree then Fx = ∅.

• Sx be the children of x (in Figure 1.c Sx3
=

{x1, x4}).

• Px be the neighbor ancestors of x (in Figure 1.c
Px2

= {x1, x5}).

• Gx be the induced parents of x, i.e., ancestors
that are neighbors for x or for some descendant
of x (in Figure 1.c Gx1

= {x3, x5}, since x5 is
the neighboring ancestor of the descendant x2).

In this work we do not address heuristics for build-
ing DFS trees, but consider that such a tree is pro-
vided.

2.3 DFS-based Variable Elimination

A heuristic for selecting the order to eliminate vari-
ables based on exploiting the DFS-tree is proposed
in [13]. The idea is that before eliminating a node in
the DFS tree one should first eliminate its children.
In a centralized approach, such an order could be gen-
erated by either a postorder traversal or a reversed
level-order traversal. This heuristic guarantees that
the arity of the largest constraint that will be added
to the problem (and therefore the complexity of the
algorithm) is bounded by the distance between two
neighbors in the DFS tree. This is bounded by the
depth of the tree and potentially much smaller than
n. The advantage of this heuristic is that the quality
of an elimination order can be easily evaluated.

2.4 Random selection and security

We prove in [25] that a constraint satisfaction prob-
lem solver is not secure if it does not pick the answer
randomly among the existing solutions. Those proofs
apply straightforwardly to optimization, and a con-
straint optimization problem solver is not secure if it
does not pick the answer randomly among the exist-
ing solutions.

The solutions we proposed were based on shuffling
the search space prior to solving, such that the solv-
ing is done with an order unknown to any partici-
pant. We propose several uniform and non-uniform

3

x1

x2

x3 x4

x5

x3

x1

x2

x5 x4

x5

x3

x1

x2

x4

a) b) c)

Figure 1: For a COP with primal graph depicted in (a), two possible DFS trees (pseudotrees) are (b) and
(c) with induced width 2. The interrupted lines show constraint graph neighboring relations that do not
belong to the DFS tree.

shuffling techniques in [21]. The result of the com-
putation will be unshuffled prior to revelation to the
participants. Shuffling can be performed using a mix-
net, build from the participants [2, 10, 21], i.e., where
each participant applies a secret permutation on the
secrets in turn.

Remark 1 The fact that a mix-net leads to a ran-
dom solution holds for an agent (or a set of agents)
only if the ’other’ agents shuffle all variables.

If at least one agent does not shuffle a variable, this
does not hold for the sub-group that shuffle, and the
benefit of the shuffling is completely lost

Theorem 1 All agents must be involved in shuffling
each variable’s domain of a problem.

Proof. If some agent Ai does not shuffle the domain of

a variable xj , then all the other agents can make a coali-

tion, find the order on xj with which the problem was

solved, and learn a set of values of xj for which there is

no optimal solution. Eliminating xj for those values from

their constraints leads to a projection of their constraint

on the remaining variables, X
′, from which they can in-

fer bounds on Ai’s costs on those remaining variables X
′

(lower bounds at minimization respectively upper bounds

at maximization).

2.5 Secure Optimization

A secure optimization algorithm for DCOP is pro-
posed in [24]. It chooses randomly one of the values
with the optimal value and reveals the total weight of
the solution and the corresponding assignments only
if desired and only to agreed participants. To ensure
random selection of the solution, shuffling of values is
done prior to solving. The result of the computation
will be unshuffled. In [18] it is shown how to make the
selection with a uniform random distribution. How-
ever, the complete versions of these techniques are
always exponential in the size of the search space (as
left after applying any pruning defined by the public
constraints).

In the following we show how to formulate arith-
metic circuits for securely computing an optimal so-
lution of a DCOP using DFS-based Variable Elimina-
tion. As in the non-secure version, the algorithm has
two parts, an (upward) dynamic programming step,
and a (downward) decoding step.

3 Arithmetic Circuits

The data structure we employ as well as their us-
age is depicted graphically in Figure 2. Continuous
lines show arcs in the used DFS tree. Interrupted

4

x3
x2
x1

MAX

MAX

MAX

MAX

x4

x3

x2

x1

x4

x3

x2

x3

x2

x4

x3

x2

x3

x2

x1

x2

x1x2

x1

x1 x1

x1

x2

x1

Wx4

+ = Wx3

+ = Wx1

W
x2

x1
W

x1

x1

W
x3

x3

W
x4

x4

W
x2

x2

W
x4

x3

W
x3

x2

W
x1

∅

+ = Wx2

Figure 2: Data structures in the Upward computa-
tion for a problem with 4 variables.

lines show arcs not belonging to the DFS tree. Con-
straints are depicted as vectors whose columns are
selected by the possible values of the combination of
involved variables. Constraints depicted below nodes
are the ones between the variable and its neighbor-

ing ancestors, associated to the variable in the initial
problem. Constraints shown on arcs are the result
of projections of the child’s aggregated constraint on
the variables of its induced parents. Constraints in-
side a node are obtained by composing the original
constraint of the node, situated below, to the pro-
jected constraints coming along arcs from children.

For each node xi there is a separate set of data
structures W xi

Fxi
, W xi

xi
, Wxi

, representing projected,

original and composed constraints. These data struc-
tures are accessed by indexing with partial assign-
ment of variables. They are implementable as multi-
dimensional matrices, where W xi

xi
has |Xi| dimensions

(one for each variable in Xi), W xi

Fxi
has |Gxi| dimen-

sions (one for each variable in Gxi
), and Wxi

has
|Gxi| + 1 dimensions (one for xi and one for each
variable in Gxi

).

• W xi
xi

holds φi, namely the local cost associated
to each combination of assignments of xi and
neighboring ancestors of xi.

• Wxi
holds the cumulated cost associated by φi

and the projection of the constraints of all its
children to each assignment of xi and induced
parents of xi, Gxi

∪ {xi}.

• W xi

Fxi
holds the cumulated cost associated by φi

and the projection of the constraints of all its
children to each assignment of induced parents
of xi, Gxi

.

On the upward path in the DFS tree, for each node
xi one computes for each assignment S of the induced
parents Gx:

W xi

Fxi
[S] = max

v∈Di

(W xi
xi

[〈xi, v〉 ∪ S|Pxi
] +

∑

y∈Sxi

(W y
xi

[(S ∪ {〈xi, v〉})|Gy
]))

The value W r
∅ , where r is the index of the root

node, is the weight of the optimal solution. The steps
of computation are detailed in the Algorithm 1.

5

procedure Upward(xi) do
foreach (y ∈ Sxi

) do
// recursive call for each child;
Upward(y);

foreach tuple ε ∈ ΓGxi
∪{xi} do

// compose costs for the same tuple;
Wxi

[ε] = W xi
xi

[ε|{xi}∪Pxi
]+

∑
y∈Sxi

(W y
xi

[ε|Gy
];

foreach tuple ε ∈ ΓGxi
do

// project composed constraint onto induced parents;
W xi

Fxi
[ε] = max

v∈Di

(Wxi
[ε ∪ 〈xi, v〉]);

Algorithm 1: Arithmetic circuit for the upward (dynamic programming) step. At the first call, the parameter
xi is the root, r, of the DFS tree. It would have to be called several times for disconnected graphs.

3.1 Unsecure decoding of solution

If we also want to reveal the assignment with the op-
timal value, it can be done with the following arith-
metic circuit, for the downward path (e.g., level-order
traversal from root).

The value of the whole tree, Vr, is the shared se-
cret W r

∅ computed at the upward step. At variable
xi with subtree value Vxi

, for each tuple ε with value
W’ in the structure Wxi

at assignments equal to the
ones selected at previous levels, compute and reveal
δK(Vxi

, W ′). If the result is 1, the corresponding as-
signment of xi in ε is selected, and the corresponding
values Vy in W y

xi
for each child variable y ∈ Sxi

is
selected as value of the subtree with root y.

The problems with this approach, of revealing the
solution, is that the algorithm cannot be used in cases
where the solution of the COP is only an intermedi-
ary computation [16]. In that kind of application
the revelation of the intermediary results on each in-
volved optimization is a leak of a secret that should
not have been disclosed. Besides, this revelation of
some results before others could be computed offers
opportunities to some participants to stop cooper-
ating after they learn secrets and before reaching a
conclusion [7]. We fix this in the following algorithm.

3.2 Secure decoding of solution

The data structures proposed for the secure down-
ward computation (decoding) are again similar for
each node. At node xi we store:

• dxi
is a shared secret vector of |Di| boolean val-

ues, dxi
[v] = 1 indicating the selection of the

corresponding value v of Di. Only one value can
be set to 1, the others being 0.

• Vxi
is the shared secret weight associated to the

selected optimal solution by the subtree with
root xi.

After performing the upward computation of dy-
namic programming, we can decode the solution se-
curely during a preorder or level-order traversal of the
tree. On visiting each node xi, a procedure is run to
compute securely the shared secret assignment of xi

using the shared secret assignments of the induced
parents, dp, for p ∈ Gxi

, and the shared secret se-
lected weight of this variable, Vxi

. The procedure also
computes the inputs for the next recursive procedure
calls, at the descendents of xi, namely the shared se-
cret selected weight Vy of each child y ∈ Sxi

.

hxi
[v] = 1−

v−1∑

k=1

dxi
[k]

hxi
[v] is 1 if there is no optimal value for xi before

v, and 0 otherwise.

6

procedure Downward(COP,W ∗
∗ ,Vr) do

foreach variable xi in the COP do
ζxi

[∅] = 1;

while xi ← get In PreOrder Next(DFS(COP)) do
foreach v ∈ Di do

hxi
[v] = 1−

∑v−1

k=1
dxi

[k];
dxi

[v] = hxi
[v]

∑
ε∈ΓGxi

∪{xi}
,ε|{xi}

=v ζxi
[ε|Gxi

]δK(Vxi
, Wxi

[ε]);

foreach y ∈ Sxi
do

// Compute ζy[ε] with Eq. 2 (or Eq. 1);
if cost(|Gy| − 2 multiplications) > cost(d|Gxi

\Gy| additions) then
foreach ε ∈ ΓGy

do
1.1 ζy[ε] = dxi

[ε|{xi}]((Gxi
== ∅)?1 :

∑
ε′∈ΓGxi

,ε′
|Gy

=ε ζxi
[ε′]);

else
foreach ε ∈ ΓGy

do
ζy[ε] =

∏
p∈Gy

dp[ε|p];

Vy =
∑

ε∈ΓGy
ζy[ε]W y

xi
[ε];

Algorithm 2: Arithmetic circuit for a secure downward phase. Standard “C” operator ?: is used at Line 1.1.

One can check that the ancestors of a node xi have
selected a tuple ε of assignments for Gxi

by comput-
ing

ζxi
[ε] =

∏

p∈Gxi

dp[ε|p] (1)

which will have value 1 if that holds and 0 otherwise.
The following sums are over all tuples ε of assign-
ments for Gxi

∪ {xi}.

dxi
[v] = hxi

[v]
∑

ε|{xi}
=v

ζxi
[ε|Gxi

]δK(Vxi
, Wxi

[ε])

Here the factor ζxi
[ε|Gxi

] = (
∏

p∈Gxi
dp[ε|p]) is

meant to return 1 if ε|Gxi
is included in the partial

assignment selected by the ancestor nodes and 0 oth-
erwise. The factor δK(Vxi

, Wxi
[ε]) is meant to return

1 if the extension of the ancestor’s assignment with
xi = v leads to an optimal cost for the current sub-
tree. The product of these two factors is summed
over all tuples where xi = v. At most one of the
terms of this summation is 1 because the first factor

is 1 only for a single ε|Gxi
(the one selected by the

ancestors). This computation inverses the projection
with max done on the Upward path.

The following computation, of Vy where y is a child
of xi, is done over all tuples ε of assignments for Gy

and selects the optimal value of the subtree rooted in
y.

Vy =
∑

ε∈ΓGy

ζy[ε]W y
xi

[ε]

The factor ζy [ε] = (
∏

p∈Gy
dp[ε|p]) is 1 only for

the actual tuple selected by ancestors of y, and the
factor W y

xi
[ε] weights the optimal tuple with its cost

in the subtree. Note that ζy can be reused at the
computation of dy.

In certain cases, namely for small |Gxi
\Gy|, it will

be faster to compute ζy from ζxi
rather than with its

definition in Eq. 1. This can be done with a single
multiplication per item:

ζy[ε] = dxi
[ε|{xi}]

∑

ε′∈ΓGxi
,ε′

|Gy
=ε

ζxi
[ε′]. (2)

7

The computation steps required by the downward
phase are detailed in Algorithm 2. At the end of
this computation, the vectors dxi

hold a shared unary
constraint allowing a single value for xi, namely the
one in the optimal solution. These unary constraints
can then be unshuffled [21]. Note that security also
requires the use of dedicated techniques for ensuring
fairness, e.g., by quasi-simultaneous revelation of so-
lutions [7].

Security Analysis Since the whole computation is
an arithmetic circuit, we are guaranteed that nothing
else is learned except for what can be inferred from
the initial knowledge, the result and the used algo-
rithm (order on values and variables). To reduce to
statistical leaks what can be inferred from the algo-
rithm, we had shown earlier [25] that the algorithm
needs to pick a solution randomly over the optimal
solutions. This is achieved here by shuffling the do-
mains of the variables [25]. Optionally the variables
can also be shuffled [17]. It was proven in [25] that
shuffling values (and variables) does not lead to a
uniform distribution in the probability of selecting a
given solution among other alternatives (uniform dis-
tributions minimizing statistical leaks at repeated in-
volvement of a secret in different computations [18]).
Therefore the level of privacy offered by the MPC-
DisWCSP3 and MPC-DisWCSP4 optimization algo-
rithms proposed in [18, 24, 20] is still higher for se-
crets involved in different computations.

4 Complexity Analysis

The Upward step is called once for each variable xi

and the number of operations for each variable is lin-
ear in the number of elements of Wxi

, i.e., exponen-
tial in |Gxi

|+1. The total cost for the upward step is
O(ndg+1), where d is the maximum size of a domain
of a variable, and g is the maximum value for |Gxi

|,
i.e. the induced width of the used DFS tree.

In the Downward step there exists a while loop for
each variable xi and for each variable xi there is a
summations for each element in Wxi

and two sum-
mations for each element of W xi

Fxi
, each term having

one multiplication (assuming the first branch of the

if). The total cost for the downward step is therefore
O(ndg+1) multiplications.

Therefore, the total complexity of the secure ver-
sion is O(ndg+1). If the unsecure downward version
with immediate revelation of assignments in solutions
is used, then the complexity is also O(ndg+1). For
forest constraint graphs (g = 1) this implies a linear
complexity, tractable and much better than the algo-
rithms in [24]. If shuffling of constraints and unshuf-
fling of solution vectors dx are used to randomize the
selection of the solution, then the cost of the shuffling
is also added [21].

5 Extensions and Applications

A version of Secure Stochastic Optimization can be
obtained by trimming the intermediary data struc-
tures at each node on the Upward phase. Some-
thing similar was proposed for non-cryptographic
techniques in [12].

Remark 2 Note that sorting the set of weights be-
fore trimming (in a beam-search like approach) is pos-
sible, but only for some applications. E.g., in auc-
tions one has to ensure that the same tuples survive
the pruning at each different optimization subproblem
appearing in the Clarke tax computations [16].

An immediate application for secure DCOPs is
in performing the intermediary optimizations steps
for Clarke tax in generalized Vickrey auctions, and
related auction clearance mechanisms. If a secure
stochastic version is used [23], then one has to use
the same pruning (with the same surviving tuples)
for each different optimization task on a given prob-
lem, as explained in [16].

Extension to omnidirectional propagations It
has been shown in [14] that the utility propagation
can be made omnidirectional by circulating messages
in all directions along the DFS tree (also top-down,
from each node to its children). In this version, a
message from a parent to its child summarizes the
utility information from all the problem except the
subtree of that child. Joining the message from the

8

parent with the ones received from the children gives
each node a global view of the system, logically mak-
ing each node in the system equivalent to the root in
the simple DPOP scheme. Projecting out all dimen-
sions from this joined message gives each node the
optimal value in the overall optimal solution.

6 Conclusion

We have shown how to speed up the secure computa-
tion for constraint optimization, by a secure equiv-
alent of the fix-cost DFS-based Variable Elimina-
tion using general arithmetic circuits. The previous
secure DCOP techniques performed secure verifica-
tions separately for each possible tuple weight, and
were significantly more expensive, specially for sparse
graphs and for problems with a large range of possi-
ble weights for tuples. We show in [25] that a secure
combinatorial problem solver must necessarily pick
the result randomly among optimal solutions, to be
really secure. Other related optimization techniques
previously tailored for auctions [27] did not support
shuffling of the problem for randomizing the selection
of the solution (as needed for privacy guarantees in
DCOPs), and did not exploit parallelism as enabled
by different branches of DFS trees. The presented
technique is linear for DCOPs with constraint graphs
consisting of forests.

The translation into arithmetic circuits of the dy-
namic programming part of the variable elimination
has proven to be straightforward (even if somewhat
lengthy) and similar to previous work. However, for
a secure integration with shuffling, and in general to
guarantee that nothing is learned before the end of
the computations [7], the last (decoding) part of the
algorithm where a winning path has to be traced
back through the dynamic programming structures
has been less straightforward and raised more inter-
esting design challenges. The result is fully based on
arithmetic circuit and mix-nets, guaranteeing the cor-
rectness and security of the compiled protocol, with
the high privacy insured by random but non-uniform
shuffling as described in [25].

The new optimization technique seems to be the
suitable technique needed to integrate constraint op-

timization into SMC [19], the first programming lan-
guage that translates [1]’s theory of secure compila-
tions of arithmetic circuits into practice.

References

[1] M. Ben-Or, S. Goldwasser, and A. Widgerson.
Completeness theorems for non-cryptographic
fault-tolerant distributed computating. In
STOC, pages 1–10, 1988.

[2] D. Chaum. Untraceable electronic mail, return
addresses, and digital pseudonyms. Com. of
ACM, 24(2):84–88, 1981.

[3] Z. Collin, R. Dechter, and S. Katz. Self-
stabilizing distributed constraint satisfaction.
Chicago Journal of Theoretical Computer Sci-
ence, 2000.

[4] I. Damg̊ard, M. Fitzi, J. B. Nielsen, and T. Toft.
How to split a shared number into bits in con-
stant round and unconditionally secure. Cryp-
tology ePrint Archive, Report 2005/140, 2005.
http://eprint.iacr.org.

[5] R. Dechter. Enhancement schemes for constraint
processing: Backjumping, learning, and cutset
decomposition. AI’90, 1990.

[6] Rina Dechter. Constraint Programming. Morgan
Kaufman, 2003.

[7] Juan Garay. Fair multi-party computation. In
Workshop on Secure Multiparty Protocols, Ams-
terdam, October 2004.

[8] O. Goldreich. Foundations of Cryptography, vol-
ume 2. Cambridge, 2004.

[9] E. Kiltz. Unconditionally secure constant round
multi-party computation for equality, compari-
son, bits and exponentiation. Cryptology ePrint
Archive, Report 2005/066, 2005. http://

eprint.iacr.org.

[10] M. Merritt. Cryptographic Protocols. PhD the-
sis, Georgia Inst. of Tech., Feb 1983.

9

[11] P.J. Modi, M. Tambe, W.-M. Shen, and
M. Yokoo. An asynchronous complete method
for distributed constraint optimization. In AA-
MAS, Melbourne, 2003.

[12] Adrian Petcu and Boi Faltings. Approximations
in distributed optimization. In Principles and
Practice of Constraint Programming CP 2005,
2005.

[13] Adrian Petcu and Boi Faltings. A scalable
method for multiagent constraint optimization.
In IJCAI, 2005.

[14] Adrian Petcu and Boi Faltings. Superstabilizing,
fault-containing multiagent combinatorial opti-
mization. In Proceedings of the National Confer-
ence on Artificial Intelligence, AAAI-05, Pitts-
burgh, Pennsylvania, USA, July 2005. AAAI.

[15] A. Shamir. How to share a secret. Comm. of the
ACM, 22:612–613, 1979.

[16] M. Silaghi. Using secure discsp solvers for gener-
alized vickrey auctions, complete and stochastic
secure techniques. In IJCAI05 DCR Workshop,
2005.

[17] M.-C. Silaghi. Solving a distributed CSP with
cryptographic multi-party computations, with-
out revealing constraints and without involving
trusted servers. In IJCAI-DCR, 2003.

[18] M.-C. Silaghi. Meeting scheduling system guar-
anteeing n/2-privacy and resistant to statistical
analysis (applicable to any DisCSP). In 3rd IC
on Web Intelligence, pages 711–715, 2004.

[19] M.-C. Silaghi. Secure multi-party computation
(SMC) programming language. http://www.

cs.fit.edu/∼msilaghi/SMC/, 2004.

[20] M.-C. Silaghi. Hiding absence of solution for a
discsp. In FLAIRS’05, 2005.

[21] M.-C. Silaghi. Zero-knowledge proofs for mix-
nets of secret shares and a version of ElGa-
mal with modular homomorphism. Cryptology
ePrint Archive, Report 2005/079, 2005. http:

//eprint.iacr.org.

[22] M.-C. Silaghi and B. Faltings. A comparison of
DisCSP algorithms with respect to privacy. In
AAMAS-DCR, 2002.

[23] M.-C. Silaghi and G. Friedrich. Secure stochastic
multi-party computation for combinatorial prob-
lems. Technical Report CS-2005-14, FIT, 2005.

[24] M.-C. Silaghi and D. Mitra. Distributed con-
straint satisfaction and optimization with pri-
vacy enforcement. In 3rd IC on Intelligent Agent
Technology, pages 531–535, 2004.

[25] M.-C. Silaghi and V. Rajeshirke. The effect of
policies for selecting the solution of a DisCSP
on privacy loss. In AAMAS, pages 1396–1397,
2004.

[26] A.J. Viterbi. Error bounds for convolutional
codes and an asymtotically opti mum decoding
algorithm. IEEE Trans. on Information Theory,
13(2):260–267, 1967.

[27] M. Yokoo and K. Suzuki. Generalized Vickrey
Auctions without Third-Party Servers. In FC04,
2004.

10

