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Abstract 

               Network intrusion detection systems often rely on matching patterns that are gleaned from known  
attacks.  While this method is reliable and rarely produces false alarms, it has the obvious disadvantage that 
it cannot detect novel attacks.  An alternative approach is to learn a model of normal traffic and report 
deviations, but these anomaly models are typically restricted to modeling IP addresses and ports, and do not 
include the application payload where many attacks occur.  We describe a novel approach to anomaly 
detection.  We extract a set of attributes from each event (IP packet or TCP connection), including strings in 
the payload, and induce a set of conditional rules which have a very low probability of being violated in a 
nonstationary model of the normal network traffic in the training data.  In the 1999 DARPA intrusion 
detection evaluation data set, we detect about 60% of 190 attacks at a false alarm rate of 10 per day (100 
total).  We believe that anomaly detection can work because most attacks exploit software or configuration 
errors that escaped field testing, so are only exposed under unusual conditions. 
 

1.  Introduction 

               The internet is one of the most influential innovations in recent history.  Though most people use 

the internet for productive purposes, some use it as a vehicle for malicious intent.  As the internet links 

more users together and computers are more prevalent in our daily lives, the internet and the computers 

connected to it increasingly become more enticing targets of attacks.  Computer security often focuses on 

preventing attacks using usually authentication, filtering, and encryption techniques, but another important 

facet is detecting attacks once the preventive measures are breached.  Consider a bank vault, thick steel 

doors prevent intrusions, while motion and heat sensors detect intrusions.  Prevention and detection 

complement each other to provide a more secure environment. 

               How do we know if an attack has occurred or if one has been attempted?  This requires sifting 

through huge volumes of data gathered from the network, host, or file systems to find suspicious activity.  

There are two general approaches to this problem: signature detection (also known as misuse detection), 

where we look for patterns signaling well known attacks, and anomaly detection, where we look for 

deviations from normal behavior.  Signature detection works reliably on known attacks, but has the obvious 

disadvantage that it is not capable of detecting new attacks.  Though anomaly detection can detect novel 
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attacks, it has the disadvantage that it is not capable of discerning intent.  It can only signal that some event 

is unusual, but not necessarily hostile, thus generating false alarms.   

               Signature detection methods are well understood and widely applied.  They are used in both host 

based systems, such as virus detectors, and in network based systems such as SNORT (Roesch, 1999) and 

BRO (Paxson, 1998).  These systems use a set of rules encoding knowledge gleaned from security experts 

to test files or network traffic for patterns known to occur in attacks.  As new vulnerabilities or attacks are 

discovered, the rule set must be manually updated. 

               How do security experts discover new unknown attacks?  Generally, the experts identify something 

out of ordinary, which triggers further investigation.  Some of these investigations result in discovering new 

attacks, while others result in false alarms.  Identifying something out of ordinary is essentially anomaly 

detection.  From their experience, security experts learned a model of normalcy and use the model to detect 

abnormal events.  On the contrary, rather than learned, a model of acceptable behavior can also be specified 

by humans as well.  For example, firewalls are essentially manually written policies dictating what network 

traffic is considered normal and acceptable. 

               We desire to endow computers with the capability of identifying unusual events similar to humans 

by learning from experience.  Classical machine learning problems are classification tasks--given examples 

of different classes, learn a model that distinguishes the different classes.  However, in anomaly detection, 

we are essentially given only one class of examples (normal instances) and we need to learn a model 

that characterizes and predicts the lone class reliably.  Since examples of the other classes are absent, 

traditional machine learning algorithms are less applicable to anomaly detection. 

               Our investigation in this paper focuses on devising and evaluating machine learning algorithms that 

generate models for detecting anomalies.  Particularly, we concentrate on anomalies in network traffic.  Our 

approach is unique in three respects.  First, we model the application payload, a more difficult problem than 

modeling just IP addresses and port numbers, as most network anomaly detectors do.  Second, we use a 

nonstationary model, in which the time since an event last occurred is significant, and the frequency of 

occurrence is not.  Third, we develop a randomized algorithm for finding the type of conditional rules that 

are most useful for anomaly detection.  We test our system on the 1999 DARPA intrusion detection 

evaluation data set (Lippmann et al., 2000), which simulates a local network under attack. 
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               The rest of this paper is organized as follows.  In Section 2, we describe related work in anomaly 

detection.  In Section 3, we describe the LERAD algorithm (learning rules for anomaly detection).  In 

Section 4 we describe the 1999 DARPA intrusion detection evaluation data set.  In Section 5, we test 

LERAD on this set and compare the results with two earlier versions that use fixed rules.  In Section 6, we 

describe the attacks in the data set and analyze how they were detected.  In Section 7, we summarize. 

 

2.  Related Work 

               Anomaly detection is a harder problem than signature detection because signatures of attacks can 

be very precise but what is considered normal is more abstract and ambiguous.  Rather than finding rules 

that characterize attacks, we wish to find rules that characterize normal behavior.  Since what is considered 

normal could be different in different environments, a distinct model of normalcy can be learned 

individually.  Hence, in our approach, customization to individual environment is automated via machine 

learning.  This contrasts to manually written polices of normal behavior that require manual customization 

at each environment.  Moreover, since the models are customized to each environment, potential attackers 

would find them more diff icult to circumvent than manually written policies which might be less customized 

due to inexperienced system administrators who do not change the default parameters and policies supplied 

by the vendors.  Much of the research in anomaly detection uses the approach of modeling normal behavior 

from a (presumably) attack-free training set.  Because we cannot predict all possible non-hostile behavior, 

false alarms are inevitable.  Thus, the rules must also generate a score or ranking reflecting the probabilit y 

of hostilit y, so that alarms can be prioritized. 

               The idea of anomaly detection is widely attributed to Forrest et al. (1996).  Forrest reasons that our 

own immune system can provide ideas for more effective intrusion detection techniques.  Part of our 

immune system functions by identifying unfamili ar foreign objects and attacking them.  For example, a 

transplanted organ is often attacked by the patient's immune system because the organ from the donor 

contains objects different from the ones in the patient.  To reduce and control rejection, doctors utili ze 

drugs.  Based on this observation, she found that when a vulnerable UNIX system program or server is 

attacked (for example, using a buffer overflow to open a root shell ), that the program makes sequences of 
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system calls that differ from the sequences found in normal operation.  Forrest used n-gram models, i.e. 

recording sequences of n = 3 to 6 calls, and matching them to sequences observed in training.  A score is 

generated when a sequence observed during detection is different from those stored during training.  Other 

models of normal system call sequences have been used, such as finite state automata (Sekar et al., 2001) 

and neural networks (Ghosh et al., 1999).  Notably, Sekar et al. (2001) utilize program counter information 

to specify states.  Though the program counter carries limited information about the state of a program, its 

addition to their model differs from typical n-gram models that solely rely on sequences of system calls. 

               A host-based anomaly detector is important since some attacks (for example, inside attacks) do not 

generate network traffic.  However, a network-based anomaly detector can warn of attacks launched from 

the outside at an earlier stage, before the attacks actually reach the host, than host-based anomaly detectors.  

Current network anomaly detection systems such as NIDES (Anderson et al., 1995), ADAM (Barbara et al., 

2001), and SPADE (2001) model only features of the network and transport layer, such as port numbers, IP 

addresses, and TCP flags.  Models built with these features could detect probes (such as port scans) and 

some denial of service (DOS) attacks on the TCP/IP stack, but would not detect attacks of the type detected 

by Forrest, where the exploit code is transmitted to a public server in the application payload. 

               Network anomaly detectors estimate the probabilities of events, such as that of a packet being 

addressed to some port, based on the frequency of similar events seen during training or during recent 

history, typically several days.  They output an anomaly score which is inversely proportional to probability.  

Anomaly detectors are typically just one component of more comprehensive systems.  NIDES is a 

component of EMERALD (Newmann and Porras, 1998), which integrates the results with host and network 

based signature detectors.  ADAM is a Bayes classifier with categories for normal behavior, known attacks, 

and unknown attacks.  SPADE is a SNORT plug-in. 

               Most current anomaly detectors use a stationary model, where the probability of an event depends 

on its average rate during training, and does not vary with time.  However, using the average rate could be 

incorrect for many processes.  Paxson and Floyd (1995) found that many network processes, such as the 

rate of a particular type of packet, have self-similar (fractal) behavior.  Events do not occur at uniform rates 

on any time scale.  Instead they tend to occur in bursts separated by large gaps on all time scales.  Hence, it 

is not possible to predict the average rate of an event over a time window by measuring the rate in another 
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window, regardless of how short or long the windows are.  An example of how a stationary model fails in an 

anomaly detector would be any attack with a large number of events, such as a port scan or a flooding 

attack.  If the detector correctly identifies each packet as anomalous, then the user would be flooded with 

thousands of alarms in a few minutes.  

 

3.  Learning Rules for Anomaly Detection (LERAD) 

               In this section, we introduce the three ideas that we believe are key to anomaly detection: First we 

extend the network traffic model to include a large number of attributes, including the application payload.  

Second, we introduce a nonstationary model, in which the probability of an event (an attribute having some 

value) depends on the time of its most recent occurrence, and not on its average frequency.  Third, we 

introduce an efficient algorithm for selecting good rules for anomaly detection from a rule space that is 

exponentially large in the number of attributes. 

               The first two ideas were developed in two earlier versions of our current system, a packet header 

anomaly detector, or PHAD (Mahoney and Chan, 2000), and an application layer anomaly detector, or 

ALAD (Mahoney and Chan, 2001).  LERAD extends these ideas by replacing the fixed set of rules with an 

algorithm for selecting them based on the training data.  All of our systems were developed and tested on 

the 1999 DARPA off-line intrusion detection evaluation data set (Lippmann et al., 2000), by training them 

on attack free network traffic and evaluating them by the number of detected attacks at a given false alarm 

rate. 

 

3.1.  Extending the Attribute Set 

               Our first system, PHAD, extendes the four attributes normally used in network anomaly detection 

systems (source and destination IP address, source and destination port numbers) to 33.  We simply divide 

up the Ethernet, IP, and transport headers (TCP, UDP, or ICMP) into fields of 1 to 4 bytes, as appropriate 

for each protocol.  In testing, we discovered that many attacks could be detected because of unusual values 

in these fields.  In addition to IP address anomalies, we found that some attacks generate unusually small 

packet sizes, unusual combinations of TCP flags (e.g. urgent data, missing acknowledgements, reserved 
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flags), IP fragmentation, and unusual TCP options.  In addition, we compute checksums and compare them 

with the checksum fields, and we found that some attacks that generate UDP or ICMP checksum errors.  

Surprisingly, we did not find any attacks that generate anomalous port numbers.  This might be due to the 

global model we use.  We simply record a set of allowed values (those seen in training) for each packet 

header field.  We do not make this set conditional on other attributes, as we do in our later models. 

               Our next system, ALAD, extends our network model to the application layer.  Instead of modeling 

single packets, as in PHAD, we model incoming TCP connections to the well known server ports (0-1023).  

Although this misses a few attacks that exploit IP, UDP, ICMP, or higher numbered ports (such as X 

servers), it does (or should) catch most attacks against servers, which usually use TCP. 

               ALAD also introduces conditional rules.  With PHAD, we assigned a probability p that an attribute 

(field) X would have a particular value x, and then an anomaly score of 1/p.  In other words, 

 

               p = Pr(X = x) 

 

A more general (and useful) model would assign a probability to a set of attributes given that another set has 

some particular values.  The most general form is, 

 

               p = Pr(X = x, Y = y, ... | A = a, B = b, ...) 

 

We call the condition A = a, B = b, .... the antecedent, and the result X = x, Y = y, ... the consequent. 

               ALAD uses five rule forms or models. 

1. Pr(source IP address | destination IP address) 

2. Pr(source IP address | destination IP address, destination port) 

3. Pr(destination IP address, destination port) 

4. Pr(TCP flags (first, next to last, and last packet) | destination port) 

5. Pr(keyword | destination port) 

                   These models were selected because they were found experimentally to give good results 

individually on the DARPA IDS evaluation, out of about 15 forms that we tried.  The first four models are 
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similar to conventional anomaly detectors.  Since we monitor only incoming traffic, the destination means 

the server under attack.  The first two rule forms model the set of users of a private (password protected) 

service, either on a per host and per server basis.  The third is intended to detect probes, attempts to access 

nonexistent hosts or services.  The fourth detects malformed or interrupted connections.  The fifth models 

the application layer, and detects some malformed server requests.  A keyword is the first word (delimited 

by spaces or tabs) on a line in the header part of the server request (indicated by a blank line separator).  For 

example, the keywords we observe for port 80 (HTTP) in the DARPA training data are: Accept-Charset:, 

Accept-Encoding:, Accept-Language:, Accept:, Cache-Control:, Connection:, GET, Host:, If-Modified-

Since:, Negotiate:, Pragma:, Referer:, User-Agent:. 

               We should point out a philosophical difference between PHAD and ALAD.  With PHAD, we used 

a machine learning approach by selecting every conceivable attribute and letting the program figure out 

which ones are useful.  It turned out that about a third of them were.  With ALAD, we used an ad-hoc 

approach to select a few (conditional) rules from the huge space of possibilities.  This proved useful (we 

showed that port numbers can detect attacks in a conditional setting) but there are probably many good rules 

that we did not think of.  With LERAD, discussed in section 3.3, we continue to model TCP connections, 

but we return to the machine learning approach by selecting a large number of attributes, whether we think 

they are useful or not, and let the algorithm figure it out.  But rather than select from the small set of 

unconditional rules, LERAD selects from the much larger space of conditional rules.  The algorithm makes 

use of the special form for rules in a nonstationary model, used by all three of our systems, which we will 

describe first before returning to LERAD. 

 

3.2.  Nonstationary Event Modeling 

               Before the 1995 study by Paxson and Floyd, it was widely believed that network traffic could be 

modeled as a stationary process, i.e. independent of time.  Although we may observe short term bursts of 

traffic of a particular type (say, an FTP data transfer), it was believed that these events would average out if 

our observation window were long enough.  However, this is incorrect, which is unfortunate because 

stationary processes are easier to model than nonstationary ones, although the problem is not 

insurmountable. 
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               To illustrate how nonstationary processes might be modeled, suppose that we observe a sequence 

of 20 events with the following outcomes, and we wish to predict what the next one will be. 

 

               11111111110000000000 

 

If we assume that the source is memoryless (one type of stationary source), then we count ten ones and ten 

zeros, and estimate Pr(1) = 1/2.  However, real systems have memory, and the sequence strongly suggests a 

change of state midway through the sequence.  Therefore, Pr(1) should be much smaller than 1/2. 

               Intuition suggests that recent history is a more reliable predictor of the immediate future than 

events that happened longer ago.  Suppose that we base our prediction on just enough of the history so that 

each outcome is observed at least once.  Then our history is: 

 

               10000000000 

 

By counting, we estimate Pr(0) = 10/11 and Pr(1) = 1/11, which agrees more closely with intuition.  

Another way of modeling this is to assume that the probability of an event is inversely proportional to the 

time t since it last occurred.  For the event 1, we have t = 11, so again we have Pr(1) = 1/11. 

               Now let us ask a different question.  We did not say that 0 and 1 are the only possible outcomes.  

What is the probability of a novel outcome, such as 5?  In this case, we can examine the entire history of n = 

20 events and observe that r = 2 of them are novel, i.e. the first event, 1, and the eleventh event 0.  Based on 

this, we would have Pr(not 0 or 1) = r/n = 2/20.  In fact, this is known as the PPMC method of estimating 

the probability of novel events in some data compression models (Bell, Witten, and Cleary, 1989).  It is not 

the only model of novel events, and it has some shortcomings (e.g. when n = 1), but it is what we use in our 

systems. 

               Our nonstationary model makes two assumptions.  First, by our example, we see that the frequency 

of an event is irrelevant, since it is only the time since the last occurrence that matters.  Thus, by our 

assumption, all observed values are equally likely.  For this reason, we are only interested in novel events, 

which have a lower probability.  By our second assumption, we model this probability as r/n, where there 
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are r unique values out of n observations.  Thus our nonstationary model consists of r, n, and the set of 

observed values.   For this example we have the set of observed values { 0, 1} , and the values r = 2 and n = 

20. 

               Now let us consider the case where we train our system on known attack-free data and test it on 

data possibly containing attacks.  It might not be possible to guarantee real data to be attack free, but those 

are the conditions in the DARPA evaluation, so we will use them for now.  Suppose that we train on the 

same 20 events as before, and then begin monitoring for attacks, and we observe the following. 

 

               11111111110000000000   0000022222 

 

In this example, each of the “2” events are anomalous.  We would assign an anomaly score of 1/p =  n/r = 

25/2 = 12.5 to the first “2” , and 0 to the rest because the event is no longer novel at this point.  However, 

this would not be correct because if “2” signals an attack, future attacks of the same type would be missed.  

To avoid this problem, we should not add “2” to the model.  But by our nonstationary argument, we know 

that subsequent values of “2” are highly likely.  If “2” is non-hostile (we don’ t know), then we would flood 

the user with false alarms. 

               The solution to this dilemma is to introduce the factor t, the time since the last anomaly, as we had 

originally.  Thus, we assign an anomaly score of tn/r, where there are n training observations, r unique 

values observed, and t events since the last anomaly.  In the above example, t = 16 for the first “2” (the 

previous anomaly was in training), and t = 1 for the others.  The value n/r = 20/2 = 10 is fixed at the end of 

training.  Thus, the first “2” has an anomaly score of 160, and the others have a score of 10.  By setting the 

alarm threshold appropriately, only the first anomaly would generate an alarm. 

               It is possible that a packet or TCP connection could violate more than one rule.  In this case, we 

add the anomaly scores: 

 

               Anomaly score = Σ tn/r 
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where the summation is over all rules that produce anomalies.  This seems obvious and gives good results in 

practice, but there is no theoretical justification that we are aware of for using a summation.  Since anomaly 

scores represent inverse probabiliti es, theory suggests we should multiply the scores if the rules are 

independent.  We know that the rules are probably not independent, but without specifying the dependency 

more precisely, we cannot say that this is the optimal way to combine scores. 

 

3.3.  Learning Conditional Rules 

               In Section 3.1 we saw that conditional rules have the general form 

 

               Pr(X = x, Y = y, ... | A = a, B = b, ...) 

 

In Section 3.2 we saw that the rules of interest are those which restrict X, Y, ... to a set of values observed in 

training.  Also, we can reduce the consequent to one attribute if we treat sets of attributes like (X,Y) as 

single attributes, such as 

 

               P(X,Y = x,y | A = a, B = b, ...) 

 

Thus, we can rewrite our rules to have the form: 

 

               If A = a, B = b, ... then X = x1, x2, x3... 

 

where x1, x2, x3... are the values observed in training. 

               Our task is to find “good” rules of this form.  For PHAD and ALAD, the rules were hand picked, 

either by eliminating the antecedent (in PHAD) or trying a few rules that we believed would give good 

results (ALAD).  The reason we did this is that the rule space is huge.  If there are m attributes, and each 

one has kj possible values, j = 1...m, then the number possible rules is: 

 



 

11 

               Σ i = 1...m Π j = 1...m, j ≠ i (kj + 1) 

 

That is, for each attribute i, all of the remaining m - 1 attributes can appear in the antecedent with either one 

of the kj allowed values for the j’ th attribute, or a “don’ t care”.  As an example, for PHAD, with 33 

attributes, ranging from 8 to 32 bits, there are about 8 x 10171 possible rules. 

               Fortunately the problem is not as hard as it seems.  We know that a good anomaly rule is one that 

is rarely violated and that generates a high score when it is.  We know that the anomaly score is tn/r, and 

that n and r can be determined from the training data.  Therefore we want rules with high n/r.  A rule has 

high n if a large number of training examples satisfies the antecedent.  It has small r if the set of allowed 

values is small .  Suppose that the rule “ if A = a and B = b then X = x1, x2, or x3” has large n and small r 

(here r = 3), and pick a training example at random.  If there are N training examples, then it is likely 

(probabilit y n/N) that A = a and B = b.  If we pick two examples at random and both satisfy the antecedent 

(which happens with probabilit y n2/N2) , then since r is small , it is likely (probabilit y ≥ 1/r) that the two 

values of X will be the same as well . 

               This suggests the following strategy.  Pick two training examples at random.  Then for each set of 

matching attributes, form rules where one attribute is the consequent and the others are conditions in the 

antecedent.  For example, if A, B, and C match, with values a, b, and c, then we have rules like “ if A = a 

and B = b then C = c”, “ if B = b and C = c then A = a”, and so on.  We can also consider subsets of the 

matching attributes, such as “ if B = b then A = a”, “B = b” , and so on.  If there are m matching attributes, 

then there are m(2m - 1) possible rules, so we may want to consider strategies for limiting the number of rules 

generated when m is large. 

               It may turn out that some initial rules turn out to be poor when fully trained.  For example, the rule 

“ if A = 1 then B = 2” after training might be “ if A = 1 then B = 2, 3, 4, 5...” with large r, or it may be that A 

is rarely 1 (small n).  Fortunately, both cases can be determined fairly quickly by sampling the training set 

rather than testing every example to compute n and r exactly. 

               It may also turn out that after training that some rules are redundant.  For example, suppose we 

have the following three rules: 



 

12 

� R1: A = 1 

� R2: B = 2 

� R3: if A = 1 then B = 2 

Since A is always 1 (at least in training), there is no need to test for this condition in rule R3, so it is 

equivalent to rule R2.  We could remove either of these rules and have the same constraints on the test data.  

Also, because rules R2 and R3 would generate anomalies at the same time (for example, if A = 1 and B = 

3), this would affect the score.  Ideally, each consequent should be counted only once (we believe). 

               Our strategy for removing redundant rules is to apply a coverage test to a sample of the training 

data.  If a rule does not predict any values not already predicted by other rules, then we discard it.  For 

instance, rule R2 predicts every value of B.  Since rule R3 does not predict any additional values, we 

discard it.  Since the rules that are discarded depends on the order in which we select them, we start with the 

rules with the highest n/r (estimated on the sample) first.  In case of a tie, we pick the rule with fewer 

conditions in the antecedent first, in this case R2. 

               We mentioned that r/n is just one way to estimate the probability of a novel event, and not 

necessarily the best.  In particular, it does not distinguish between the case where all of the novel events 

happen at the beginning of training and the case where the novel events are spread throughout the training 

data.  In the latter case, we would expect the novel events to continue, generating a lot of false alarms.  To 

eliminate these types of rules, we simply discard rules that generate anomalies near the end of the training 

period (e.g. in the last 10% of the data).  Stated another way, we know that any anomaly in the training data 

is a false alarm, so we eliminate those rules that are expected to generate most of them. 

 

3.4.  The LERAD Algorithm 

               We are now ready to describe the LERAD algorithm. 

 

1. Generate rules with initial n/r = 2/1 on L randomly selected pairs of training examples. 

2. Coverage test: remove rules that do not predict any values (on a small sample S) not already predicted 

by rules with higher n/r (estimated on S). 

3. Train on the full training set, removing any rule that generates anomalies in the last E examples. 
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As an example, suppose that we have the following training data, with examples T1 through T6.  For the 

coverage test, we use T1-T4 as our sample S, although in general we would sample uniformly, which 

requires an extra pass through the training data.  We let L = 1 and E = 1. 

 

 

Table 1.  Example training data for LERAD (with values marked during the coverage test) 

 

               In step 1, we pick two training examples at random, say T1 and T2.  These may be selected either 

from the S (T1-T4) or from the full set (T1-T6).   In our implementation of LERAD, we generate rules by 

selecting up to 4 matching attributes in random order, and then generating one rule for each match, with the 

first match being the consequent and the remaining matches being added to the antecedent.  For example, 

T1 and T2 have 3 matching attributes A, B, and C.  If we select these in random order, say B, C, A, then the 

rules would be: 

� R1: B = 2 

� R2: If C = 3 then B = 2 

� R3: If A = 1 and C = 3 then B = 2. 

               After selecting L pairs of examples, we apply the coverage test.   In our example, R1-R3 are the 

only rules.  We first train them on S, updating n, r, and the list of observed values.  We then sort them by 

decreasing n/r, or by increasing number of conditions in the antecedent if equal. 

� R2: if C = 3 then B = 2 (n/r = 3/1) 

Example A B C D 

T1 (sample) 1 2 (R2) 3 4 

T2 (sample) 1 2 (R2) 3 5 

T3 (sample) 1 3 (R1) 4 5 

T4 (sample) 0 2 (R2) 3 5 

T5 1 5 3 5 

T6 (end) 1 3 3 5 

T7 (start of test) 1 8 3 5 

T8 (test) 1 8 3 5 
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� R1: B = 2 or 3 (n/r = 4/2) 

� R3: if A = 1 and C = 3 then B = 2 (n/r = 2/1) 

Next we mark the values in S starting with the rule with highest n/r, which is rule R2.  It marks column B 

for T1, T2, and T4.  Rule R1 is next.  It marks the only remaining value in column B not already marked, in 

T3.  Rule R3 would have marked column B for T1 and T2, but because these are both already marked, the 

rule is removed.  This leaves us with the following rules: 

� R1: B = 2 or 3 

� R2: if C = 3 then B = 2 

After training on the full set (T1-T6) we have: 

� R1: B = 2, 3, 5 (n/r = 6/3) 

� R2: if C = 3 then B = 2, 3, or 5 (n/r = 5/3) 

Because T6 is in the last E examples, then we remove rule R2 because the anomalous value (3) was 

observed there for the first time.  This is not anomalous to rule R1 because the value 3 was already seen in 

T3.  So our final set of rules is just {R1}. 

               Once we are done training and start testing, we assign anomaly scores of Σ tn/r for each violated 

rule, where t is the time since the last anomaly for that rule, whether during training or testing, and the 

summation is over all rules that were violated.  For example, suppose that T7 in Table 1 is the start of 

testing.  This example violates rule R1, which has n/r = 6/3.  The last anomaly for R1 occurred at time T5, 

so t = 2.  Thus, the anomaly score is tn/r = 2(6/3) = 4.  If we had kept rule R2 with n/r = 5/3 and t = 1 (since 

T6 is the last anomaly), then it would also be anomalous and generate a score of 1(5/3) = 1.67 for a total 

anomaly score of 5.67. 

               Since training has finished, we do not update the rules, but we do record that the last anomaly time 

for these rules is now T7.  Thus, T8 is still anomalous, and rule R1 still has n/r = 6/3.  However, t is now 1 

(since T7 also violated R1), so the anomaly score is now 2 rather than 4. 

 

3.5.  PHAD, ALAD, and LERAD 

               Although we have focused on LERAD, this system evolved from our earlier work with PHAD 
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(packet header anomaly detection) and ALAD (application layer anomaly detection).  All three are 

nonstationary models, in that they assign an anomaly score of Σ tn/r summed over each of the violated rules.  

The three systems differ in the attributes that they monitor, and the types of rules that they represent.  

               PHAD monitors 33 packet header fields for both incoming and outgoing traff ic.  There is a fixed 

rule for each field, which is a set of allowed values (or more precisely, a set of ranges if there are more than 

32 distinct values).  Thus, one rule might be “TOS = 0, 8, 16, or 192” , where TOS is one of the fields in the 

IP header.  In this example, n is the number of IP packets and r is 4.  There are additional rules for Ethernet, 

TCP, UDP, and ICMP. 

               ALAD monitors the incoming side of TCP connections to well known server ports on the home 

network.  ALAD has 5 fixed rule forms, although there may be many rules for each form.  For instance, one 

form is “ if destination port = x then keyword = y1, y2, y3... yr” .  There is one rule for each observed value 

of x in the training data.  In this example, n is the number of times that port number x occurs in training, and 

r is the number of values of y.  Because a connection may have several keywords (the first word on a line in 

the header), a single rule may be applied several times to a single connection.  If more than one keyword is 

anomalous, then their scores are added. 

               LERAD monitors the same TCP connections as ALAD, but it uses the rule learning algorithm 

described in Section 3.4.  Also, it monitors more attributes and parses the application payload differently.  It 

just takes the first 8 words of the payload (some of which may be empty strings) as 8 attributes.  Thus, each 

rule is applied only once in testing.  A rule may have a conjunction of  0 to 3 conditions in the antecedent 

and exactly one attribute in the consequent.  An example is “ if F2 = AP then F1 = S or AS” , where F1 and 

F2 are the first and next to last TCP flags in the connection, and A, P, and S are the ACK, PSH, and SYN 

flags.  In this example, there is one condition in the antecedent, n is the number of connections where the 

antecedent F2 = AP is satisfied in training, and r is 2.  Unlike ALAD, there is not a rule for every possible 

value of F2. 

 

4.  The DARPA IDS Evaluation 

               We developed and tested PHAD, ALAD, and LERAD  using the 1999 DARPA intrusion detection 
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evaluation data (Lippmann et al., 2000).  The data is from a simulated local network for an imaginary air 

force base under attack as shown in Figure 1.  The object is to detect as many attacks as possible given off-

line data dumps of the network traffic and other data. 

SunOS

Solaris

Linux

Windows
    NT

Sniffer

Cisco
Router

Internet

Ethernet

Attacks

Attacks

 
 

Figure 1.  The 1999 DARPA IDS simulation. 

 

               In the original evaluation in 1999, eight organizations submitted 18 systems for testing.  During the 

first phase, the participants were provided with 3 weeks worth of sniffed network traff ic from inside and 

outside the local network (both sides of the router), audit logs and nightly file system dumps from four 

“victim” hosts running different unpatched operating systems, and BSM (Basic Security Module) logs from 

the Solaris machine, which traces system calls.  The data consists of two weeks of attack-free background 

traff ic for training anomaly detection systems (weeks 1 and 3) and one week of labeled attacks. (week 2) for 

testing and for training signature detection systems.   Most of the attacks were taken from security maili ng 

lists and cracker-oriented web sites to exploit known vulnerabiliti es, and are described by (Kendall , 1999). 

               After the systems were developed, they were tested on  two additional weeks (10 days) of data in 

which the system was attacked 201 times, including 63 attacks of types not seen during week 2.  Other 

attacks were varied to make them stealthy or hard to detect, for example, using slow port scanning or 

varying the exploit code to elude signature detection.  The intrusion detection systems were evaluated by the 

number of attacks detected and number of false alarms.  An attack is counted as detected if the system 

correctly reports the IP address of either the attacker or target, and the date and time of the attack within 60 
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seconds of any portion of the attack.  The systems were required to output a score for each alarm so that a 

threshold could be used to vary the false alarm rate.  Participants were allowed to declare before the 

evaluation what types of attacks they were designed to detect.  Attacks are categorized by the host operating 

system, the type of data where evidence of the attack exists (inside or outside network traffic, audit logs, 

BSM, file system dumps), and type of attack (probe, denial of service (DOS), remote to local (R2L), or user 

to root (U2R)).  Detections of attacks outside the declared categories do not count.  Multiple detections of 

the same attack are counted only once.  The results of the evaluation for the top four performing systems 

when the alarm threshold is set to 100 (10 per day) as reported by Lippmann are shown in Table 2.  These 

systems may use a variety of techniques: both signature and anomaly detection, and both host and network 

based methods. 

 

 
 

Table 2.  Top official results of the 1999 DARPA IDS evaluation, showing number of detections out of the 

number of attacks that the system is designed to detect, at 100 false alarms (Lippmann et. al., 2000). 

 
 

               After the 1999 evaluation, the 5 weeks of data were released, including the truth labels for the 201 

attacks (date, time, IP addresses, attack description) in weeks 4 and 5. 

 

5.  Experimental Results 

               We evaluated PHAD, ALAD, and LERAD by training them on 7 days of attack free inside traffic 

from week 3, and evaluating them on weeks 4 and 5 using the same criteria and false alarm rate as in the 

original DARPA evaluation.  We also post-process the alarms by removing duplicates (same IP address) 

within 60 seconds of each other, keeping only the highest scoring alarm.  This usually improves the 

performance of any IDS because it reduces the number of false alarms (which count individually) without 

System Detections 

Expert 1 85/169 (50%) 

Expert 2 81/173 (47%) 

Dmine 41/102 (40%) 

Forensics 15/27 (55%) 
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reducing the number of detections (of which only one would count).  All but a few attacks show some 

evidence in the inside network traffic, so to simplify the results we just report all detections.  The inside 

network traffic for one day (week 4, day 2) is missing, so we omit the 12 attacks during this period, leaving 

189 of the original 201.  We also discovered by examining the test data that one attack (an apache2 attack) 

was not labeled.  We labeled this attack in our evaluation, bringing the number of attacks that our systems 

are designed to detect to 190. 

               The training data from week 3 is 7 days, containing about 12 million IP packets for PHAD, or 

35,455 incoming server TCP connections for ALAD and LERAD.  The test data (weeks 4 and 5) contain 

about 20 million IP packets, or 178,099 TCP connections (including incomplete connections during 

attacks). 

               Table 3 summarizes the parameters used for PHAD, ALAD, and LERAD, and the results. 
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Table 3.  Parameters and results summary for PHAD, ALAD, and LERAD. 

 

               Table 4 shows how the number of attacks detected depends on the false alarm rate as the alarm 

threshold is varied.  For rates up to 200 false alarms (20 per day), LERAD alone detects the most attacks.  

At higher rates, the best result is obtained by merging all three systems.  To merge systems, we select equal 

numbers of the highest ranking alarms from each system and discard duplicate alarms.  An alarm is 

considered a duplicate if there is a higher ranked alarm identifying the same target IP address and the time 

is within 60 seconds.  Figure 2 shows the same results graphically. 

 

 

Parameter PHAD ALAD LERAD 

Modeled data All packet headers Incoming server TCP 

connections 

Incoming server TCP 

connections 

Attributes 33 fields from 

Ethernet, IP, TCP, 

UDP, and ICMP 

packet headers 

5: source and 

destination IP address, 

destination port, TCP 

flags, keywords 

23: date, time, IP 

address bytes, ports, 

duration, length, 3 TCP 

flags, first 8 words 

Rules 33 fixed, unconditional 

on each field 

5 conditional fixed rule 

forms selected 

manually 

Learned, conditional 

Anomaly score tn/r tn/r tn/r 

Training instances, N 12 M 35 K 35 K 

Test instances  20 M 178 K 178 K 

Initial rule set   About 1100 from L = 

1000 pairs 

Rules after coverage 

test 

  77-85 using |S| = 100 

samples 

Final number of rules 33 5 forms 56-66 after discarding 

anomalies in last 10% 

(E = 0.1N = 3545). 

Detected attacks (out 

of 190) at 100 false 

alarms 

54 (72 including TTL 

artifact) 

60 114.1 ± 2.3 (averaged 

over 10 runs) 
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Table 4.  Unofficial number of attacks detected (out of 190) by PHAD, ALAD, LERAD on the 1999 

DARPA IDS evaluation test data, and their combinations as the false alarm rate is varied.  Blank entries 

indicate where no measurement was taken because our implementations did not generate enough false 

alarms, i.e. LERAD generates less than 200 false alarms. 
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False 

Alarms 

PHAD ALAD LERAD 

(avg.) 

PHAD + 

ALAD 

PHAD + 

LERAD 

ALAD + 

LERAD 

All 3 

5 5 10 4 6 3.2 7 6 

10 9 13 15.2 14 9.2 17 11.6 

20 21 19 48 21 22.8 25.8 23.6 

50 33 42 86.6 44 54.6 59 49.8 

100 54 60 114.6 73 89.4 93.6 85.2 

200 56 66 117.4 96 110.6 107.8 117.4 

500 56 72  108 123.6 120.4 134.8 

1000 56   110 133.4 126 144 

2000 62   111 142.2  147 

5000 86   125 146.8  151.6 
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Figure 2.  Detection-false alarm graph of Table 4. 

 

5.1.  PHAD Results 

               The complete results for PHAD and ALAD are described in our other papers (Mahoney and Chan, 

2001, Mahoney and Chan, 2002), so we only summarize the results here.  PHAD initially detected 72 of 

190 attacks, or 38%, at 100 false alarms (10 per day).  We examined the anomalies that generated the 

alarms, and discovered that the most common anomaly was in the TTL (time to live) field, most likely a 

simulation artifact.  The TTL field is a counter that is decremented each time an IP packet is routed in order 

to prevent infinite routing loops.  The DARPA evaluation used real hosts for the target, but simulated 

background traffic for the local network and Internet by modifying IP addresses from locally synthesized 

traffic.  We believe the TTL anomalies were the results of the real attacking hosts being a different real 

distance from the targets than the real background generating hosts. 

               When we remove the TTL field from PHAD, it detects 54 of 190 attacks, or 28% (with 100 false 

alarms).  As expected, many of these attacks exploit implementation flaws at the network and transport 

layers.  Most of these are probes or denial of service (DOS) attacks.  The most common anomalies resulting 

in detections occur in the IP fragment field, TCP flags, and IP source and destination addresses.  Of the 33 

fields besides TTL, 12 generate anomalies that detect at least one attack. 

 

5.2.  ALAD Results 

               ALAD (Mahoney and Chan, 2002) was tested alone and in combination with PHAD.  Because 

PHAD and ALAD differ in the types of attacks they detect, it is possible to merge the results  into one 

larger system that detects more attacks than either one by itself.  ALAD detects 60 attacks by itself (at 100 

false alarms) and 73 when combined with PHAD without TTL.  The two systems are combined by taking 

equal numbers of top scoring alarms from each system and removing duplicates (within 60 seconds).  The 

systems can be combined because ALAD is designed to detect mostly R2L attacks in the application 

payload.  An R2L (remote to local) attack is where the attacker exploits a vulnerability in a server to 

execute commands on the target, although not necessarily as root.  Usually this is accomplished by sending 
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a malformed server request, such as a buffer overflow, in the application payload. 

 

5.3.  LERAD Results 

               LERAD is the most successful of our anomaly detection systems, detecting an average of 114 out 

of 190 attacks, or 60%, at 100 false alarms (10 per day).  It detects a broad range of attacks (probe, DOS, 

R2L, U2R).  Because LERAD examines only TCP, it misses a small number of attacks that exploit IP, UDP 

or ICMP protocols.  Other than these, LERAD detects most of the attacks detected by PHAD and ALAD. 

               Our version of LERAD extracts 23 features from each incoming TCP connection: date, time, last 

two bytes of the destination IP address as two attributes (the first two are fixed, since we examine only 

incoming connections), four bytes of the source IP address (as four attributes), source and destination port 

numbers, TCP flags for the first, next to last, and last TCP packets (3 attributes), duration in seconds, total 

number of bytes transmitted in the application payload, and the first 8 words in the data, delimited by white 

space (as 8 attributes).  We find that LERAD effectively weeds out attributes that have little or no predictive 

value from the rule set, such as the date and time; thus there is little harm done by adding too many 

attributes. 

               In step 1, the rule building phase we select 1000 to 10,000 pairs of training instances and generate 

up to four rules from each pair.  Selecting L = 1000 pairs, we typically generate about 1050 to 1150 rule 

candidates.  With L = 10,000 pairs, we generate about 5600-6200 rule candidates, but this does not lead to 

any more detections than the smaller set.  We used L = 1000 pairs for our results.  Also we find no 

significant difference in the detection rate whether we sample the pairs of training instances from the full 

training set or from the smaller set S of instances selected for the coverage test.  For our results we took 

pairs from S to simplify the implementation. 

               In step 2, the coverage test, we sample |S| = 20 to 100 training instances from the full set and use 

these to estimate n/r and remove rules that do not predict any values in this sample not already predicted by 

a better rule (higher n/r).  We find that using fewer than 10 samples or more than a few hundred results in 

fewer detections.  The reason that using too many samples is bad may be that too many rules with poor 

coverage are kept.  As evidence, we found that we could partially offset the loss of detections with a large 

sample size by imposing the more stringent requirement during the coverage test that a rule mark at least 
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two values instead of one.  We sorted rules with equal n/r by placing rules with fewer antecedent conditions 

first, although doing this does not have a significant effect on the number of detections.  The result of the 

coverage test is to reduce the number of candidate rules from 1050-1150 to about 80-85, or if we had used 

10,000 pairs, from 5600-6200 to about 110-130.  We used |S| = 100 samples for the coverage test. 

               In step 3, we train the rules on the full training set (N = 35,455 instances from week 3), and 

remove any rule that generates an anomaly in the last E = 0.1N = 10% of the training data.  This is an 

experimental maximum, producing more detections than using the last 5% or 20% to remove rules.  This 

step reduces the rule set by about 30%.  Most of the rules have n at least 10% of the training set and r < 10.  

Most rules have one or two conditions in the antecedent. 

               Since LERAD is a randomized algorithm, it produces a different result for each run.  In ten runs, 

we observed 112 to 118 detections (average 114.1, standard deviation 2.3, standard error 0.7) using 56 to 

67 rules (average 61.2).  We found no significant correlation between the number of rules and number of 

attacks detected over these runs.  Appendix A shows a typical rule set and a list of detected attacks for one 

run. 

 

5.4.  Run Time Performance 

               PHAD, ALAD, and LERAD are experimental programs which read the inside tcpdump files from 

the DARPA IDS evaluation data set.  The data consists of one file per simulated day, totaling 2.9 gigabytes 

of training data (about 12 million packets) and 4.0 gigabytes of test data (about 20 million packets).  We 

focused our software development on maximizing the number of detections rather than for speed and 

memory efficiency.  Nevertheless, execution time is on the order of a few minutes on modern hardware for 

all systems, and memory requirements are quite reasonable, a few kilobytes at most to represent the rule set. 

               PHAD was implemented as a 400 line C++ program.  It runs in 6 minutes under Solaris on a Sparc 

Ultra 60 with a 450 MHz 64-bit processor and 512 MB memory and 4 MB cache.  This is about 23 seconds 

of CPU time per simulated day.  The processing rate is 95,000 packets per second for training and 73,000 

packets per second for testing. 

               ALAD and LERAD were implemented in two parts, one to reassemble the packets into TCP 

streams, and a second to perform the algorithm.  The reassembly is done by a 400 line C++ program, which 
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runs (one time) for 17 minutes under Windows Me on a 750 MHz Duron processor with 256 MB of 

memory.  The output of this program is 35,455 TCP training connections stored in a 20 megabyte text file, 

and 178,101 connections in a 40 megabyte test file.  ALAD, a 90 line Perl program, processes this data in 

60 seconds.  LERAD, a 400 line C++ program, runs in 30 seconds, out of which 6 seconds are used to train 

and construct a rule set and 24 seconds to process the test data. 

 

6.  Analysis of Detected and Missed Attacks 

               In this section, we examine each attack in detail, and how it was detected or missed by PHAD, 

ALAD, and LERAD.  Because LERAD is randomized, we examine five runs and report the average number 

of detections.  Attack descriptions are due to (Kendall, 1999) and examination of the test data. 

               The attacks in the 1999 DARPA IDS evaluation are based on known vulnerabilities at the time of 

the evaluation.  Most of the attacks are from published sources.  In most cases, patches to the operating 

system or servers were available to thwart the attacks at the time, but these were deliberately not applied so 

that the attacks could succeed.  By using anomaly detection on this data, we simulate the present day case of 

detecting attacks that exploit vulnerabilities that have not yet been discovered. 

               The attacks used in the DARPA evaluation are classified as probes, DOS, R2L, U2R, and Data, 

based on a more detailed classification scheme by (Kendall, 1999).  The evaluation includes a security 

policy which prohibits probes, which might not otherwise be considered attacks.  The policy also defines 

Data attacks as unauthorized copying of secret data or its unencrypted transmission over the network by 

authorized users.  PHAD, ALAD, and LERAD have no knowledge of the security policy.  Table 5 

summarizes the attacks detected by each system at 100 false alarms, with the LERAD results averaged over 

5 runs. 
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Table 5.  Number of attacks of each type detected by PHAD, ALAD, and LERAD at 100 false alarms. 

 

               In the following sections, we describe each attack in detail and how it was detected.  Most attacks 

have several instances which exploit the same vulnerability, but may have different sources and targets, and 

may differ in other details, such as what is done to the target once the attack succeeds.  In some cases, the 

attack may be “stealthy” , modified in ways intended to make it harder to detect.  The number of instances 

includes the mislabeled apache2 attack and does not include attacks for which the inside network traff ic is 

missing (week 4 day 2). 

 

6.1.  Probes 

               A probe is any attempt by a potential attacker to gather information in preparation for an attack.  

Probes are prohibited by the simulation’s security policy.  Table 6 shows the number of probes detected by 

each system and the anomalies that led to detection. 

 

Attack Type Number PHAD ALAD LERAD (5 runs) 

Probe 37 22 (59%) 6 (16%) 23.2 (63%) 

DOS 63 24 (38%) 19 (30%) 36.6 (58%) 

R2L 53 6 (11%) 25 (47%) 34.8 (66%) 

U2R/Data 37 2 (5%) 10 (27%) 20.0 (54%) 

Total 190 54 (28%) 60 (32%) 114.6 (60%) 
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Table 6.  Probes detected by PHAD, ALAD, and LERAD (average) with 100 false alarms. 

 

               Illegalsniffer.  A compromised host on the local network is run in promiscuous mode to sniff 

Ethernet traffic.  It is detectable only because it makes reverse DNS lookups to resolve sniffed IP addresses 

(which a more careful attacker could have avoided doing).  DNS is normally a UDP protocol, so ALAD and 

LERAD do not detect it.  PHAD detects both attacks by coincidence.  Because there are multiple victims 

(all hosts on the local network) and the attack is prolonged (hours), any alarm for any host during this 

period would be counted as a detection. 

               IPsweep.  The attacker scans a block of IP addresses using ICMP ECHO REQUEST packets 

(ping).  ALAD and LERAD do not monitor ICMP, so they do not detect it.  PHAD detects an unusually 

small Ethernet packet size (52 bytes) in 4 of the 7 attacks. 

               Ls_domain.  The attacker spoofs a backup DNS server to make a DNS zone transfer request, 

obtaining a list of all local hostnames and IP addresses.  PHAD and ALAD miss it.  LERAD consistently 

detects both attacks because the request is made on TCP port 53 rather than the usual UDP port 53.  The 

anomaly varies in each run.  In 70% of the detections, the TCP port number is anomalous.  In the other 

30%, the third word (^@^A) is anomalous in the context of the fourth or fifth word being empty. 

               Mscan.  This is a system administration tool used to test for many well known vulnerabilities.  

PHAD, ALAD, and LERAD all detect it.  LERAD generates hundreds of duplicate alarms (which are 

Probe Number PHAD ALAD LERAD How Detected 

illegalsniffer 2 2 1 0 Coincidental false alarms 

ipsweep 7 4 0 1.2 Small Ethernet packet 

ls_domain 2 0 0 2 Port number, payload 

mscan 1 1 1 1 Destination address, port, payload 

ntinfoscan 3 0 2 3 Outgoing connection, payload 

portsweep 15 10 0 10 FIN without ACK, dest port, source 

queso 4 3 0 3 TCP flags 

resetscan 1 0 0 1 Source address, duration 

satan 2 2 2 2 Destination ports, payload 

Total 37 22 6 23.2  

Percent  59% 16% 63%  
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removed during postprocessing) due to the various tests.  The highest scores result from anomalous 

destination addresses. 

               NTinfoscan.  This probe gathers information about a Windows NT host similar to mscan.  

LERAD consistently detects every attack with many duplicate alarms, mostly in the TCP flags and 

application payload.  In some cases, LERAD detects outgoing connections on a server port, or an incoming 

RST-ACK packet (client connection refused).  In the application text, LERAD detects a missing carriage 

return before a linefeed in HTTP requests.  There are also anomalies due to destination addresses and ports.  

ALAD detects two instances by the unusual HTTP keyword “HEAD”. 

               Portsweep.  The attacker tests a range of TCP ports to see which ones have servers listening.  

LERAD detects 10 of the 15 attacks, usually because they use a stealth technique called FIN scanning.  In 

this probe, the attacker sends an unsolicited FIN packet, a request to close the connection, although none 

was opened, and waits for a reply, either a FIN-ACK or a RST if no server is listening.  A SYN packet 

(request to open) would accomplish the same thing, but a FIN normally does not result in a log entry in the 

target.  LERAD (and PHAD) detect the probe because there is no ACK flag to acknowledge the previous 

data packet, as would normally be the case.  There are also some anomalies involving destination addresses 

and ports, which would still be detected in the absence of FIN scanning. 

               Queso.  The attacker identifies the operating system and version of the target by sending a series of 

unusual or malformed packets.  Different operating systems respond in characteristic ways because the 

exact response is not specified by the protocols.  One of the four attacks is against the router and not visible 

in the inside traff ic, but LERAD detects the other three by anomalous TCP flag combinations: FIN without 

ACK (also detected by PHAD), SYN + FIN, and SYN + the two reserved flags.  There is also a SYN 

packet containing application data, which is allowed by the TCP protocol but rare. 

               Resetscan.  The attacker tests for listening ports by sending RST packets, which are not normally 

logged.  LERAD detects it by an anomalous source address in 4 of 5 runs, and in one case by a probe to the 

FTP port having a duration of 0 seconds. 

               Satan.  This is a system administration tool that tests for multiple vulnerabiliti es as with mscan.  

Likewise, it is easily detected by PHAD, ALAD, and LERAD with multiple alarms.  Most involve 

destination port numbers, but ALAD and one run of LERAD detect the anomalous “QUIT” command in an 
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HTTP connection. 

 

6.2.  Denial of Service (DOS) Attacks 

               A denial of service attack is one which degrades or disables a server, host, or network.  The two 

most common approaches are to flood the target with data, or to send malformed data causing the target to 

crash due to a bug.  Table 7 shows the number of attacks detected by each system. 

 

 

 

Table 7.  Denial of service attacks detected by PHAD, ALAD, and LERAD (average) with 100 false alarms. 

 

               Apache2.  This attack exploits the inability of some versions of the Apache web server to handle 

very long HTTP requests.  A typical attack contains multiple requests each with thousands of lines and 

DOS Attack Number PHAD ALAD LERAD How Detected 

apache2 4 2 4 4 TCP options, payload, source addr. 

arppoison 5 0 0 1.8 Incomplete TCP connections 

back 4 0 0 4 Payload, some by duration, length 

crashiis 7 0 6 7 Payload, interrupted connections 

dosnuke 4 4 0 4 URG flag, interrupted connections 

land 1 0 0 0  

mailbomb 3 0 3 3 Payload (lowercase commands) 

neptune 4 0 0 3 Dest. port, source, coincidence (1) 

pod 4 4 0 0 Fragmented IP packets 

processtable 3 1 1 3 Source address 

selfping 3 0 0 0 (no network traffic generated) 

smurf 5 4 0 0 ICMP checksum, source address 

syslogd 4 3 0 0 Short IP packet size, source address 

tcpreset 3 0 1 2 Improper TCP open/close, source 

teardrop 3 3 0 1.2 IP fragments, interrupted TCP 

udpstorm 2 2 0 0 UDP checksum 

warez 4 1 4 3.6 Source address 

Total 63 24 19 36.6  

Percent  38% 30% 58%  
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looking something like this: 

GET / HTTP/1.1 
User-Agent: sioux 
User-Agent: sioux 
User-Agent: sioux 
User-Agent: sioux 
... 
 

PHAD detects anomalies in the TCP options field in two attacks, possibly an idiosyncrasy of the attacking 

host (real or simulated).  ALAD detects anomalous source addresses, as well as one attack where the 

anomalous command “x” appears in place of “GET / HTTP/1.1” .  LERAD detects all four attacks 

(including the mislabeled one) by various anomalies in the request, such as “HTTP/1.1” or “sioux” .  In the 

training data, the version is always HTTP/1.0.  Other alarms are due to improperly closed TCP connections 

caused by the server crashing. 

               ARPpoison.  An attacker who has compromised a host on the local network disrupts traff ic by 

listening for “ARP-who-has” packets and sending forged replies.  ARP (address resolution protocol) is used 

to resolve IP addresses to Ethernet addresses.  Thus, the attacker disrupts traff ic by misdirecting traff ic at 

the data link layer.  PHAD detects some anomalous Ethernet addresses, but because the packets do not 

contain IP addresses, the alarms do not meet the DARPA criteria for detection.  LERAD detects an average 

1.8 of 5 attacks, mostly due to incomplete TCP connections with long durations or fill ed with null bytes. 

               Back.  The attacker sends an HTTP request “GET ///////////////...” with 6000-7000 slashes, which 

causes some versions of the Apache web server to consume excessive CPU time.  LERAD detects all four 

attacks, usually because the third word (normally the HTTP version) is missing after it truncates the input to 

1000 characters.  A few attacks are detected by excessively long lengths or durations. 

               CrashIIS.  This crashes the IIS web server on Windows NT with a very long, malformed request. 

“GET ../../../../..”  LERAD detects the 7 attacks in a manner similar to back. 

               Dosnuke.  The attacker crashes Windows (“blue screen of death“) by sending urgent data to the 

NetBIOS port, exploiting a bug.  Normally urgent data in a TCP connection is rare.  It is intended to send 

data to the front of the queue at the receiver.  PHAD and LERAD detect all four attacks, usually by the TCP 

URG flag being set.  LERAD also detects incomplete TCP connections or unusually long durations. 

               Land.  This attack crashes SunOS 4.1 by sending a spoofed TCP SYN packet with the source 
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address equal to the destination address.  PHAD, ALAD, and LERAD miss this attack. 

               Mailbomb.  This attack floods a user with thousands of junk emails.  ALAD and LERAD detect 

all three attacks because the SMTP “mail ” command is lowercase.  It is normally uppercase but not required 

to be. 

               Neptune.  This is also known as a “SYN flood” or “half open” attack.  The attacker floods the 

target with SYN packets with spoofed source addresses, causing it to exhaust memory and refuse 

connections until the spoofed connections time out.  In Solaris 2.6, sending 20 spoofed packets to each port 

every 10 minutes causes it to refuse connections for one hour after the attack stops.  A distributed attack of 

this type was used to shut down several major websites (CNN, Yahoo, Amazon) in 2000, and was used by 

the Code Red worm to attack a White House web server.  Servers can now defend against this attack by 

encrypting TCP state information in the acknowledgment field and reconstructing it when the client 

responds with the first data packet, rather than saving state information. 

               LERAD detects 3 of 4 attacks.  One of these is actually a coincidental back attack that occurs at 

the same time against the same target.  The others are due to anomalous destination ports (attacking 

nonexistent servers) and occasional anomalous source addresses. 

               POD.  This attack, also known as “ping of death” , crashes some older operating system (but none 

of the DARPA hosts) by sending an oversize fragmented IP packet that reassembles to more than 65,535 

bytes, the maximum allowed by the IP protocol.  It is called “ping of death” because some older versions of 

Windows 95 could be used to launch the attack using “ping -l 65510” .  PHAD detects the attack, because 

the IP packets are fragmented, which is rare in normal traff ic.  ALAD and LERAD miss the attack because 

they do not monitor ICMP. 

               Processtable.  This attacks exhausts the UNIX process table by flooding a server with requests.  

LERAD detects all of the attacks by anomalous source addresses. 

               Selfping.  This attack crashes Solaris with a ping command to the local host.  It is issued locally 

and generates no network traff ic, so it is not detected. 

               Smurf.  This is a distributed network flooding attack initiated by sending ICMP ECHO REQUEST 

packets (ping) to a broadcast address with the spoofed source address of the target.  The target is then 

flooded with ECHO REPLY packets from every host on the broadcast address.  PHAD detects 4 of 5 
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attacks: one anomalous source address and 3 ICMP checksum errors.  The checksum errors could be bugs 

in the program that was used to simulate what a smurf attack should look like in the DARPA simulation.  

ALAD and LERAD do not monitor ICMP and did not detect the attack. 

               Syslogd.  This attack crashes the syslogd remote logging service by sending a UDP packet with a 

spoofed source IP address that cannot be resolved by DNS.  PHAD detects 3 of 4 attacks, two unusually 

short IP packets and one anomalous source address.  ALAD and LERAD do not monitor UDP. 

               TCPreset.  This attack listens for TCP SYN packets on a compromised host on the local network 

and immediately sends a spoofed RST (connection refused) packet, disrupting traffic.  LERAD detects two 

attacks by an anomalous source address and by lone TCP packets without SYN and FIN/RST to open and 

close the connections. 

               Teardrop.  This attack reboots the Linux host by sending a fragmented IP packet that cannot be 

reassembled because of a gap between the fragments.  PHAD detects all the IP fragments, which rarely 

occur in normal traffic.  LERAD detects 2 of 3 attacks due to unrelated TCP connections on the target 

having unusually long durations and not being closed when the target reboots. 

               UDPstorm.  An attacker floods the local network by setting up a loop between an echo server and 

a chargen or another echo server by sending a UDP packet to one server with the spoofed source address of 

the other.  PHAD detects a UDP checksum error in both initiating packets (but does not detect the actual 

storm).  ALAD and LERAD do not monitor UDP. 

               Warez.  This is a security policy violation in which an FTP server is used to upload (warezmaster) 

or download (warezclient) illegal software.  ALAD detects 4 attacks and LERAD 3.6 by anomalous source 

addresses. 

 

6.3.  Remote to Local (R2L) Attacks 

               An R2L attack is where an unauthorized user gains the ability to execute commands on the target.  

These attacks usually exploit software errors in servers or improperly configured systems to gain access.  

The attacking code normally occurs in the application payload, so we would expect these attacks to be 

detected by ALAD and LERAD, but not by PHAD.  Table 8 confirms this. 
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Table 8.  R2L attacks detected by PHAD, ALAD, and LERAD (average) at 100 false alarms. 

 

               Password Guessing.  In the DARPA set, these attacks are variously known as guesstelnet, 

guessftp, or guesspop depending on the target.  An attack may try a few common passwords, such as guest 

or repeat the user’s name, or may try every word in a dictionary (dict).  ALAD detects 3 of 10 attacks.  

LERAD consistently detects all ten, mostly by anomalous source addresses and destination ports, but 

occasionally by the use of lowercase “user” and “pass” FTP commands. 

               Framespoofer.  This attack delivers a malformed HTML message by email with a hidden frame to 

exploit a bug in the email client.  Only ALAD detects it with the anomalous keyword “Content-Transfer-

Encoding:” in the message. 

               FTPwrite.  This attack exploits an improperly configured FTP server in which the home directory 

is not write protected.  The attacker uploads a file .rhosts with contents “+ +” , and is then able to rlogin as 

user ftp without a password.  ALAD and LERAD detect both attacks.  ALAD detects an anomalous source 

R2L Attack Number PHAD ALAD LERAD How Detected 

guess passwd 10 0 3 10 Source address, dest. port, payload 

framespoofer 1 0 1 0 Payload 

ftpwrite 2 0 2 2 FTP upload, dest. port, payload 

httptunnel 2 0 0 0  

imap 2 0 0 2 Destination port, source address 

named 3 0 0 3 Destination port 

ncftp 5 3 5 4 Source/destination address, payload 

netbus 3 0 2 3 Source address, unclosed TCP 

netcat 4 0 4 3.4 Source address, destination port 

phf 3 0 2 3 Source address, payload 

ppmacro 3 0 1 1 Source address 

sendmail  2 2 2 2 Payload, source address 

snmpget 4 0 0 0 (no inside network traff ic) 

sshtrojan 3 0 3 1.2 Source address 

xlock 3 1 0 0 Source address 

xsnoop 3 0 0 0.2 Coincidental false alarm 

Total 53 6 25 34.8  

Percent  11% 47% 66%  
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address and an upload on port 20 (FTP), which is used only for downloads in training.  LERAD detects the 

upload and also an anomalous port 513 (rlogin).  In one run, it detects the anomalous string “ /root/.rhosts” 

(on the FTP control port), and in another, the string “+” (on the FTP data port). 

               HTTPtunnel.  This is a backdoor which evades a firewall (if one were to be used) by appearing to 

be a web browser to communicate with the attacker.  It is not detected. 

               IMAP.  This is a buffer overflow attack on the mailbox server in Linux.  Buffer overflow 

vulnerabiliti es often exist in C programs that use functions like strcpy() or gets() which do not check the 

length of the input string.  If the string overflows the array (buffer) into which it is written, it can overwrite 

the return address on the stack.  Then when the currently executing function returns, it jumps to the 

overwritten address instead.  In a typical attack, this would be the address of a short string of machine code, 

supplied as part of the input, which opens a shell to the attacker.  Since imap runs as root on the target, the 

attacker would be able to execute arbitrary commands as root. 

               LERAD detects 2 of the 3 attacks by anomalous source addresses (30% of the time) and 

anomalous destination port 143 (imap) for the other 70%.  A destination port anomaly is probably not 

realistic, but source addresses would be because an imap server is not public; it requires a password to 

retrieve mail . 

               Named.  This is a buffer overflow in the DNS server.  Instead of opening a root shell , the 

published version of the exploit opens an X client running as root on the target.  LERAD detects all 3 

attacks, either because destination port 53 is anomalous (the exploit uses TCP rather than UDP) or it detects 

a long string of null bytes in the application payload. 

               Ncftp.  This attack uses an FTP server’s data port to gain local network access to other servers, 

such as auth and SMTP.  ALAD and LERAD detects 4 of 5 attacks by anomalous source and destination 

addresses.  ALAD also detects keyword anomalies on ports 21 (FTP) and 113 (auth). 

               Netbus.  This is a backdoor on the STMP (mail ) port.  ALAD detects 2 of 3 attacks by anomalous 

source addresses.  LERAD detects all 3, 2 by source address and one by an unclosed TCP connection. 

               Netcat.  This is a backdoor disguised as a DNS client.  Two of the attacks are actually the break-in 

and setup phases.  ALAD and LERAD detect the attacks mostly by anomalous source addresses and 

anomalous use of TCP port 53 (normally UDP). 
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               Phf.  This attack exploits a badly written CGI script distributed by default with older Apache web 

servers.  A vulnerable server is attacked by sending it the URL “http://target/cgi-

bin/phf?Qalias=x%0acommand“ , which causes command to be executed by target.  (Newer versions of 

Apache have fixed the bug and log the attacker’s IP address).  ALAD detects 2 attacks, both by anomalous 

source addresses and one by an extra null byte which mysteriously appears as a keyword.  LERAD detects 

all 3 attacks because the third word is missing from the HTTP request, a characteristic of HTTP/0.9 which 

is used only by very old clients but still accepted by servers. 

               PPmacro.  This is a trojan PowerPoint macro which is delivered as an email attachment.  ALAD 

and LERAD detect 1 of 3 attacks by an anomalous source address. 

               Sendmail.  This is an SMTP buffer overflow which gives root access.  It is one of the few attacks 

that had to be written specially for the DARPA simulation because no exploit code had been published.  

PHAD detects both attacks by anomalous source addresses.  ALAD detects both by source address and by 

the anomalous keyword “Sender:”  LERAD detects both attacks because the first word is MAIL instead of 

HELO or EHLO, although this is legal SMTP protocol. 

               SNMPget.  This is an outside attack on the Cisco router which does not generate any traff ic visible 

on the inside network.  It is not detected. 

               SSHtrojan.  This is a fake ssh (secure shell ) client which captures the password of a user who 

unknowingly tries to log in with it.  ALAD detects the 3 attacks by anomalous source addresses on port 22 

(ssh).  LERAD detects one attack by an anomalous source address. 

               Xlock.  This is a fake xlock screensaver that captures passwords.  It can be started remotely on any 

UNIX host with an open X server (set by typing xhost +).  PHAD detects one attack by an anomalous 

source address.  ALAD and LERAD do not detect it because they only monitor well known ports (0-1023), 

and X normally runs on port 6000. 

               Xsnoop.  This attack monitors keystrokes on any host with an open X server.  It is not detected 

because ALAD and LERAD do not monitor port 6000.  (One of 5 runs of LERAD produces a coincidental 

detection). 

 

6.4.  User to Root (U2R) and Data Attacks 
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               A U2R attack is one in which an attacker who already is able to execute nonprivileged commands 

(legitimately or not) exploits a flaw in the operating system to execute commands as another user, usually 

root or administrator.  In UNIX, this is usually done by exploiting a vulnerabilit y in a suid root program to 

open a shell running as root.  Examples are eject, fdformat, ffbconfig, loadmodule, perl, ps, and xterm.  All 

but perl and loadmodule are buffer overflows.  Anypw, casesen, sechole, and yaga are Windows NT 

exploits.  SQLattack exploits a bug in a database application running as a restricted shell to escape to a user 

level.  NTFSdos requires physical access to the target to bypass the operating system‘s file protections by 

booting from a floppy disk and copying or modifying the hard disk.  The only data attack, secret, is where 

an authorized user copies or transmits secret data in violation of a security policy. 

               A network intrusion detection system is not designed to detect U2R or data attacks.  These are best 

detected by host based systems, by monitoring the system calls of the programs under attack, or monitoring 

file systems.  The DARPA IDS evaluation set provides this data, which was used by many of the original 

participants, but we did not use it.  In theory, it is possible to monitor telnet sessions for signs of a U2R 

attack, but it is very diff icult to model normal sessions, and impossible if the session is encrypted using ssh. 

               Nevertheless ALAD and LERAD detect many U2R attacks.  Usually they detect anomalous source 

addresses during the telnet session or the FTP session used to upload the exploit code, or simply that the 

FTP server is being used to upload files when it was only used for downloads in training.  (This is detected 

because the first TCP flags on the FTP data port is SYN-ACK instead of SYN).  Occasionally LERAD 

detects anomalies in the exploit code itself as it is being uploaded on the FTP data port.  NTFSdos does not 

directly generate any traff ic, but is sometimes detected because of interrupted TCP connections when the 

target is rebooted.  Either the duration is unusually long, or there is no FIN or RST flag to close the 

connection. Table 9 shows the U2R and Data attacks detected. 
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Table 9.  U2R and Data attacks detected by PHAD, ALAD, and LERAD (average) at 100 false alarms. 

 

6.5.  Poorly Detected Attacks 

               We have demonstrated that it is possible to merge the outputs of two intrusion detection systems 

(such as PHAD and ALAD) and detect more attacks than either one by itself at the same combined false 

alarm rate.  In general, an anomaly detection system would not be used by itself, but in combination with 

signature detection for known attacks.  In addition, a network based system might be used in combination 

with a host based system.  Merging systems does not always work, however.  If one system performs poorly, 

then it may drag down the other.  Also, they must detect different types of attacks.  For example, ALAD + 

LERAD does not perform as well as LERAD alone because the attacks they detect are similar and their 

detection rates are quite different. 

               We wish to test whether our systems could be combined with the systems from the original 

DARPA evaluation (some of which use host based or signature techniques) to increase the total number of 

detections.  For this to happen, the distributions of detected attacks must be different.  In particular, we wish 

U2R Attack Number PHAD ALAD LERAD How Detected 

anypw 1 0 0 1 Source address 

casesen 3 0 3 2.8 FTP upload (3), source address (1) 

eject 2 0 1 1 FTP upload, source address 

fdformat 3 1 2 1.8 FTP upload, source address 

ffbconfig 2 0 1 1 Source address 

loadmodule 2 0 0 0  

ntfsdos 2 0 0 1.8 Interrupted TCP connection 

perl 4 0 0 2 Source address 

ps 3 0 0 2 Source address 

sechole 2 0 1 1.8 FTP upload (0.2 payload), source 

sqlattack 2 0 0 1 Source address 

xterm 3 0 1 1.4 FTP upload (0.2 payload), source 

yaga 4 1 1 2.4 FTP upload, source address 

secret (data) 4 0 0 0  

Total 37 2 10 20  

Percent  5% 27% 54%  
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to test whether our systems detect attacks that were poorly detected in the original evaluation. 

               In the original 1999 evaluation there were 21 attack types (77 instances) which were poorly 

detected by all 18 of the original participants.  Lippmann et. al. define an attack as “poorly detected” if none 

of the participants detect more than half of the instances with 100 false alarms.  We find that PHAD and 

LERAD are about equally likely to detect a poorly detected attack as any other attack.  The poorly detected 

attacks make up 38% of the total set, and about 37% of the attacks detected by PHAD or LERAD.  Only 

ALAD does worse on the poorly detected attacks than the others, and then only slightly.  Out of the 60 

attacks it detects, 20 (33%) of them are poorly detected attacks. 

               Table 10 summarizes the results for the poorly detected attacks.  The column “best orig.” is the 

maximum off icial number of detections (blank if zero) for any of the 18 original systems at 100 false alarms 

as reported by Lippmann et. al. (2000, Table 4).  For example, no system detected more than one of two 

instances of ls_domain or any of the three stealthy ipsweep attacks.  The columns PHAD, ALAD, and 

LERAD are the unoff icial number of attacks detected at 100 false alarms according to our own 

measurements.  The values for LERAD are averaged over 5 runs using different random number seeds. 

               We caution against comparing our systems directly to the original participants.  The original 

evaluation was blind (no access to test data), and our evaluation is unoff icial.  In addition, participants may 

have excluded some attacks by design, so that they would not count even if detected.  The number of attacks 

listed in the table includes the missing data (week 4 day 2) which was available to systems that monitored 

outside network traff ic or used host based techniques. 
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Table 10.  Poorly detected attacks detected by the best original system in the 1999 evaluation (Lippmann et. 

al., 2000) and by PHAD, ALAD, and LERAD (average of 5 runs) at 100 false alarms (unoff icial).  The last 

row shows the percentage of detected attacks that were in the original set of poorly detected attacks. 

 

6.6.  Categories of Anomalies 

               We might ask why anomalies should signal attacks.  In a host based IDS, such as Forrest’s, 

anomalies are indicated by unusual sequences of system calls.  We might expect this for some attacks, such 

as buffer overflows, where the program is executing code not written by the original programmer.  

Poorly Detected Attack Number Best orig. PHAD ALAD LERAD 

stealthy ipsweep (Probe) 3  1  0.2 

ls_domain 2 1   2 

stealthy portsweep 11 3 9  7 

queso 4  3  3 

resetscan 1    1 

arppoison (DOS) 5 1   1.8 

dosnuke 4 2 4  4 

selfping 3     

tcpreset 3 1  1 2 

warezclient 3   3 2.6 

ncftp (R2L) 5  3 5 4 

netbus 3 1  2 3 

netcat 4 2  4 3.4 

snmpget 4     

sshtrojan 3   3 1.2 

loadmodule (U2R) 3 1    

ntfsdos 3 1   1.8 

perl 4    2 

sechole 3 1  1 1.8 

sqlattack 3    1 

xterm 3 1  1 1.4 

Total poorly detected 77 15 20 20 43.2 

Total of all attacks 201  54 60 114.6 

Percent poorly detected 38.3%  37.0% 33.3% 37.6% 
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However, many of the attacks that we detect are not of this type, in particular, probes and DOS.  Also, many 

attacks, including most R2L and U2R attacks, are detected by anomalies in the input to the target, which 

detect the attack even before the target enters an anomalous state.  Why should such anomalies indicate 

hostilit y rather than just unusual but legitimate behavior? 

               To answer this question, we categorize the anomalies into five groups according to what is being 

modeled.  Two of these are famili ar from traditional network and host based anomaly detection systems.  

Traditional network systems model user behavior in the form of IP addresses and ports, looking for 

unfamili ar clients accessing a service.  Host based systems look for signs that the program is in an unusual 

state after an attack.  However, instead of monitoring system calls, we monitor output over the network. 

               The three new categories are related to modeling inadequately tested software.  In one case, the 

target program has a vulnerabilit y (a bug) which the attacker exploits with unusual input on which the target 

was never tested.  In the second case, the attacking traff ic differs in some arbitrary way from normal traff ic 

because the attack was not tested in the target’s environment.  In the third case, the attacker deliberately 

inserts anomalies in an attempt to attack the IDS with traff ic on which it was probably not tested. 

               Table 11 summarizes the five categories of anomalies and the attacks they detect (at least some of 

the time) based on the analysis we did in Sections 6.1 to 6.4. 
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Table 11.  Anomaly categories and the attacks that they detect or partially detect . 

 

The following are examples of each anomaly category. 

� User behavior.  As with conventional network anomaly detection, we model the range of source IP 

addresses that are typically used to access a host or service.  We are suspicious of anyone new, 

especially if the service is private or password protected.  We include in this category FTP uploads on a 

server that is normally only used for downloads, which is how most of the U2R exploits are detected.  

(The actual anomaly is a server initiated connection on port 20, the FTP data port, as indicated by the 

TCP flags).  While this may not be realistic outside the DARPA simulation, a network IDS is not 

designed to detect U2R attacks anyway, so we could consider these to be bonus detections. 

� Induced by a successful attack.  These are anomalies output by the target as symptoms of a successful 

attack, analogous to the anomalous system calls detected by a host based system.  ALAD and LERAD 

do not monitor outgoing traffic, but they do detect interrupted TCP connections when the target crashes 

due to a DOS attack. 

� Patterns related to the attack.  These anomalies exploit vulnerabilities in the target due to software 

errors.  The reason these errors exist is because they were not caught in field testing because the inputs 

Anomaly Type Attacks Detected or Partially Detected (out of 56 types) Total 

User behavior (source 

address, FTP upload) 

Probe: portsweep; DOS: apache2, neptune, processtable, syslogd, 

warez; R2L: guess, imap, ncftp, netbus, netcat, phf, ppmacro, 

sendmail, sshtrojan, xlock; U2R: anypw, casesen, eject, fdformat, 

ffbconfig, perl, ps, sechole, sqlattack, xterm, yaga 

27 

Induced by successful 

attack 

DOS: apache2, arppoison, back, crashiis, dosnuke, tcpreset, teardrop; 

U2R: ntfsdos 

8 

Pattern related to 

attack (bug in target) 

Probe: ls_domain, mscan, ntinfoscan, queso, satan; DOS: apache2, 

back, crashiis, dosnuke, pod, smurf, teardrop; R2L: ftpwrite, named, 

ncftp, netcat; U2R: sechole, xterm 

18 

Pattern unrelated to 

attack  (bug in 

attacking program) 

Probe: ipsweep; DOS: apache2, mailbomb, syslogd, udpstorm; R2L: 

guess, framespoofer, netbus, phf, sendmail 

10 

Attempt to evade IDS Probe: portsweep 1 
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required to invoke the error rarely occur normally.  For example, it is rare (but legal) to fragment IP 

packets, so if there is a bug in the TCP/IP stack related to reassembly, it goes undetected.  Teardrop 

exploits such a bug, but it must use a rarely seen pattern to do so. 

� Patterns unrelated to the attack.  Some attacks have anomalies because the attacker did not go to the 

effort of making the attack resemble normal traff ic, which varies with each environment and is diff icult 

for the attacker to know.  For example, FTP and SMTP allow either uppercase or lowercase commands, 

but most client programs use uppercase.  The sendmail and one of the FTP password guessing attacks 

are discovered because they use lowercase commands.  These anomalies could be considered bugs in 

the attacking program, because the exploits could be easily modified to hide them if the attacker knew 

the environment. 

� Evasion.  The DARPA simulation did not make much use of the techniques outlined in Ptacek and 

Newsham (1998) to evade or attack a network IDS, such as IP fragmentation, short TTL expirations, 

overlapping TCP segments, bad checksums, and so on.  Such techniques probably would have been 

caught by PHAD if they had tried to hide an R2L or U2R attack that might have otherwise escaped 

notice.  The only example of a backfired attempt at evasion is portsweep, where the attacker used FIN 

packets (without an accompanying SYN packet or ACK) to prevent servers from logging the scan. 

To summarize, the five types of anomalies are: 

� User behavior - the client is unfamili ar. 

� Induced - the target is in an unusual state after an attack. 

� Related pattern - the target has a bug because it was tested only under normal conditions. 

� Unrelated pattern - the attack has a bug because it was not tested in the target’s environment. 

� Evasion - the attacker guesses that the IDS has bugs that show up under abnormal conditions. 

 

7.  Conclusions and Future Work 

               We described a network anomaly detection system that is unique in three respects.  First, it uses a 

large number of attributes in order to model program behavior in addition to user behavior.  Second, it uses 

a nonstationary model in which the time since an event is significant and the average frequency is not.  
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Third, it eff iciently finds a small number of good rules from the huge set of possibiliti es.  The system 

performs well on the DARPA IDS evaluation data set, detecting a broad range of attacks, including those 

that were poorly detected in the original evaluation.  We identified three new categories of anomalies 

related to inadequate software testing and attempts to exploit it . 

               There are some obvious minor improvements we could make to LERAD.  We could extend the 

model by adding IP, UDP, and ICMP attributes, as well as attributes appropriate for binary application 

protocols like DNS.  Our analysis of the application payload is limited as well (first 8 words), and could be 

extended.  LERAD should also be appropriate for host based systems by analyzing audit logs or BSM 

(system calls) to detect R2L and U2R attacks.  The design of LERAD as a flexible machine learning 

algorithm should make such systems just a matter of extracting attributes. 

               Our system is limited in that it has not been tested in a live environment.  This is an obvious 

drawback, but not one which is easy to resolve.  In order to conduct a reproducible evaluation, the traffic 

must be recorded and published, which raises privacy and ethical issues.  The DARPA evaluation was 

simulated, but this raises questions about artifacts due to simulation errors (such as the TTL field) or overly 

clean background traff ic that might make attacks easier to detect.  It is very diff icult to simulate the “crud” 

found in real traff ic (Floyd and Paxson, 2001).  One possibilit y may be to add real traff ic (with sensitive 

data removed) to the DARPA data set to add background noise. 

               Furthermore, we have assumed that attack free traff ic is available for training.  This would not be 

true in a real environment.  We expect that having attacks in the training data would mask their detection in 

the test data.  We have done some preliminary work in this area and found that when LERAD is trained on 

data containing attacks (week 2), that there is a 29% decrease in the detection of novel attacks and a 33% 

decrease in the detection of repeat attacks (at 100 false alarms). 

               A common strategy for anomaly detection (e.g. NIDES and SPADE) is to compare short term 

behavior (the current event) with long term behavior (hours, days, or weeks), under the assumption that the 

number of attacks in the training data will be reasonably small .  This type of adaptive model does not have 

explicit training and test periods, and should keep up with changes to the system as software, hardware, and 

users are added to the network.   Although LERAD uses an explicit training period (with two passes), we 

believe that an online anomaly detection system that uses the principles we have learned from LERAD is  
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feasible in a real environment.  We plan to pursue work in this direction. 
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Appendix A.  Typical LERAD Run 

Listed below is a typical rule set generated by LERAD after training on 7 days of attack-free network traff ic 

from week 3 of the DARPA IDS evaluation data.  This set has 56 rules and detects 117 out of 190 attacks 

with 100 false alarms (10 per day).  Rules are ordered by decreasing n/r, which is shown for each rule.  The 

attributes are: 

� DATE as month/day/year 

� TIME as hour: minutes: seconds 

� SA3, SA2, SA1, SA0: 4 bytes of the source IP address 

� DA1, DA0: last two bytes of the destination IP address 

� SP, DP: source and destination port numbers 

� F1, F2, F3, TCP flags for the first, next to last, and last incoming packet.  Each letter shows that the 

flag is set as follows: 1, 0 (reserved flags), U (urgent data), A (acknowledgment), P (push), S (sync, 

open connection), F (finish, close connection), R (reset, connection refused).  A dot (.) by itself 



 

45 

indicates that no flags are set. 

� DUR: duration in seconds from first to last packet. 

� LEN: length of application data transmitted in bytes. 

� W1-W8: first 8 words of application data, shown with a preceding dot (.) so that empty words can be 

seen.  Words are delimited on white space (linefeeds, spaces, tabs) and truncated to 8 characters.  The 

symbol ^M^ indicates a carriage return and linefeed.  The symbol ^@ indicates a null byte (ASCII 0). 

 

Table A1.  Typical LERAD rule set. 

1 28882/2 if F2=.AP then F1 = .S .AS 
2 28718/2 if F1=.S F3=.AF then F2 = .S .AP 
3 14236/1 if DA0=100 then DA1 = 112 
4 12867/1 if W1=.^@GET then DP = 80 
5 35455/3 if then DA1 = 113 112 114 
6 10857/1 if SA2=016 then SA3 = 172 
7 10643/1 if W1=.^@EHLO then DP = 25 
8 9914/1 if W5=.MAIL then W3 = .HELO 
9 9914/1 if W3=.HELO then W7 = .RCPT 
10 9898/1 if DP=25 F3=.AF W3=.HELO then W5 = .MAIL 
11 28882/3 if F2=.AP then F3 = .AP .AF .R 
12 35455/4 if then F1 = .S .AF .AS .R 
13 34602/4 if F3=.AF then F2 = .S .AP . .AS 
14 7645/1 if W5=. then W8 = . 
15 7596/1 if W3=. then W7 = . 
16 7596/1 if W2=. then W6 = . 
17 7596/1 if W2=. then W5 = . 
18 29549/4 if F1=.S then F2 = .S .AP . .A 
19 7365/1 if DUR=0 W2=. then W4 = . 
20 35455/5 if then F3 = .S .AP .AF .AS .R 
21 6823/1 if F2=.AP W7=.Mozilla/ then W6 = .User-Age 
22 12885/2 if DP=80 then W1 = .^@GET . 
23 12867/2 if W1=.^@GET then W3 = .HTTP/1.0^M^ .align= 
24 5827/1 if DP=20 then LEN = 0 
25 10642/2 if F2=.AP W1=.^@EHLO then W3 = .HELO .MAIL 
26 10105/2 if W7=.RCPT then W1 = .^@EHLO .^@HELO 
27 10105/2 if W7=.RCPT then W5 = .MAIL .RCPT 
28 4814/1 if SA3=172 SA0=050 F1=.S then SA2 = 016 
29 35455/8 if then SA3 = 196 172 197 194 195 135 192 152 
30 12838/3 if DP=25 then W1 = .^@EHLO . .^@HELO 
31 7279/2 if SA0=050 then SA2 = 016 073 
32 3521/1 if F3=.AF W5=.http://h then DA0 = 100 
33 6852/2 if W4=.Referer: then W7 = .Keep-Ali .Mozilla/ 
34 6824/2 if W7=.Mozilla/ then W4 = .Connection: .Referer: 
35 19139/6 if DUR=0 F1=.S then DP = 113 25 80 79 22 515 
36 18807/6 if DA1=112 then DA0 = 050 100 194 207 149 020 
37 29549/10 if F1=.S then DP = 113 25 23 80 135 21 79 22 515 139 
38 35455/12 if then DA0 = 105 050 204 084 168 148 169 100 194 207 149 020 
39 2802/1 if SA1=091 then SA0 = 233 
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40 35455/13 if then SA2 = 037 016 182 168 169 115 218 027 008 227 073 007 013 
41 5223/2 if SA3=194 then SA0 = 021 153 
42 24974/10 if DUR=0 then DP = 113 25 23 80 20 79 22 1022 515 1023 
43 6813/3 if F3=.AF W7=.Mozill a/ then W5 = .Keep-Ali .http://m .http://h 
44 35455/16 if then SA1 = 113 075 112 091 114 115 218 251 060 033 151 248 001 177 216 215 
45 2138/1 if DA0=100 SA1=113 then SA2 = 016 
46 7911/4 if SA2=016 F2=.AP F3=.AF then SA1 = 113 112 114 115 
47 12885/7 if DP=80 then W4 = .HTTP/1.0^M^ .Connection: .Referer: . .Host: .User-Agent:  
               .If-Modified-Sinc 
48 35455/24 if then SA0 = 105 158 050 204 084 182 233 168 148 169 100 194 108 207 021 149 189 153 
               020 069 191 234 010 104 
49 7634/6 if DA1=112 SA2=016 then DA0 = 050 100 194 207 149 020 
50 12875/14 if DP=80 F1=.S then W6 = .User-Age .[en] .Connecti . .Accept: .(X11; .http://m .http://h  
               .03 .06 .08 .16-Mar-9 .23 .11 
51 10857/12 if SA2=016 then DA0 = 105 050 204 084 168 148 169 100 194 207 149 020 
52 648/1 if F2=.AP W6=.PORT then W8 = .LIST^M^ 
53 1849/3 if W2=.^C then W6 = ." .' .^X^@DUMB 
54 7656/32 if W7=. then DUR = 0 23 1 12 108 4 30 6 9 21 24 7 14 22 2 3 11 15 27 29 18 5 42 44 36 17  
               64 77 78 123 103 3545 
55 12838/92 if DP=25 then DUR = 113 25 0 23 114 1 100 80 12 4 30 6 899 9 21 24 20 7 79 8 26 14 22  
               2 3 10 11 15 27 29 13 904 902 901 28 69 16 18 5 900 3599 41 33 94 31 44 38 60 96 86 36 90  
               52 39 19 3600 65 32 61 83 17 34 903 56 53 95 57 59 54 35 37 76 89 70 107 3601 77 106 110  
               109 87 3602 104 43 93 99 67 62 103 71 81 98 
56 10643/84 if W1=.^@EHLO then DUR = 113 25 0 23 114 1 80 12 4 30 6 9 21 24 20 7 79 8 26 14 22  
               2 3 10 11 15 27 29 13 28 69 16 18 5 3599 41 33 94 31 44 38 60 96 86 36 90 52 39 19 3600  
               32 61 83 17 34 56 53 95 57 59 54 35 37 76 89 70 107 3601 77 106 110 109 87 3602 104 43  
               93 99 67 62 103 71 81 98 
 

Below are the attacks detected by the rules above, sorted by the number of the rule that contributed the 

greatest proportion of the anomaly score.  Attack names are those used in the DARPA evaluation.  The 

“Pct.” column shows the percentage contribution of the listed rule.  The “anomaly” column shows all 

attributes involved in the rule and their values.  A “?” indicates the anomalous value, corresponding to the 

consequent.  For example, the first line shows that rule 1 contributed to 44.70% of the anomaly score for the 

apache2 detection.  Rule 1 is “ if F2=.AP then F1 = .S .AS”  The actual value of F1 in the attack is “ .AP” 

(indicating the TCP connection was not opened properly).  Table A2 shows 111 detections rather than 117 

because the alarms were not postprocessed to remove duplicate alarms (within 60 seconds). 

 

Table A2.  Attacks detected by rules in table A1. 

 

Attack        Rule Pct.   Anomaly 
------        ---  ----   ------- 
apache2       001 (44.70) F1?=.AP F2=.AP 
eject         001 (61.92) F1?=.AP F2=.AP 
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apache2       001 (62.37) F1?=.AP F2=.AP 
ntinfoscan    001 (98.69) F1?=.AP F2=.AP 
tcpreset      001 (99.98) F1?=.AP F2=.AP 
neptune       002 (62.67) F1=.S F2?=.A F3=.AF 
mscan         003 (99.97) DA1?=118 DA0=100 
portsweep     003 (99.99) DA1?=118 DA0=100 
dosnuke       005 (41.14) DA1?=115 
ncftp         005 (66.75) DA1?=118 
ncftp         005 (75.38) DA1?=118 
guesstelnet   005 (79.9) DA1?=118 
netbus        011 (99.77) F2=.AP F3?=.S 
portsweep     012 (27.42) F1?=.F 
portsweep     012 (53.83) F1?=.F 
queso         012 (55.42) F1?=.F 
dosnuke       018 (84.48) F1=.S F2?=.UAP 
dosnuke       018 (88.64) F1=.S F2?=.UAP 
dosnuke       018 (96.21) F1=.S F2?=.UAP 
queso         020 (52.17) F3?=.F 
ntinfoscan    020 (85.86) F3?=.AR 
portsweep     020 (88.65) F3?=.F 
portsweep     020 (99.32) F3?=.F 
satan         022 (100) DP=80 W1?=.^@QUIT^M^ 
apache2       022 (99.99) DP=80 W1?=.^@^@^@^@^@^@^@^@ 
crashiis      023 (100) W1=.^@GET W3?=. 
back          023 (100) W1=.^@GET W3?=. 
crashiis      023 (37.22) W1=.^@GET W3?=. 
back          023 (45.09) W1=.^@GET W3?=. 
phf           023 (74.41) W1=.^@GET W3?=. 
back          023 (74.42) W1=.^@GET W3?=. 
phf           023 (83.08) W1=.^@GET W3?=. 
phf           023 (85.74) W1=.^@GET W3?=. 
crashiis      023 (95.98) W1=.^@GET W3?=. 
crashiis      023 (99.69) W1=.^@GET W3?=. 
crashiis      023 (99.73) W1=.^@GET W3?=. 
casesen       024 (100) DP=20 LEN?=27649 
sechole       024 (100) DP=20 LEN?=32771 
ftpwrite      024 (100) DP=20 LEN?=6 
xterm         024 (99.1) DP=20 LEN?=6075 
warez         024 (99.65) DP=20 LEN?=283619 
casesen       024 (99.72) DP=20 LEN?=27649 
satan         024 (99.96) DP=20 LEN?=375 
fdformat      024 (99.98) DP=20 LEN?=156430 
portsweep     029 (26.15) SA3?=202 
ntinfoscan    029 (26.16) SA3?=206 
portsweep     029 (26.78) SA3?=209 
sqlattack     029 (33.55) SA3?=206 
netbus        029 (38) SA3?=209 
perl          029 (39.17) SA3?=209 
sshtrojan     029 (39.4) SA3?=202 
guessftp      029 (39.73) SA3?=208 
anypw         029 (40.84) SA3?=204 
ffbconfig     029 (40.84) SA3?=206 
netcat_setup  029 (40.84) SA3?=207 
guest         029 (40.84) SA3?=209 
guesstelnet   029 (40.84) SA3?=209 
yaga          029 (40.84) SA3?=209 
perl          029 (47.27) SA3?=207 
ps            029 (47.27) SA3?=209 
guest         029 (52.65) SA3?=153 
ps            029 (54.55) SA3?=199 
netbus        029 (60.38) SA3?=209 
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portsweep     029 (74.81) SA3?=153 
netcat_breaki 029 (41.54) SA3?=206 
mailbomb      030 (100) DP=25 W1?=.^@mail 
mailbomb      030 (100) DP=25 W1?=.^@mail 
mailbomb      030 (75.69) DP=25 W1?=.^@mail 
sendmail      030 (98.16) DP=25 W1?=.^@MAIL 
sendmail      030 (99.8) DP=25 W1?=.^@MAIL 
crashiis      031 (52.89) SA2?=048 SA0=050 
arppoison     035 (100) DP?=23 DUR=0 F1=.S 
processtable  035 (100) DP?=23 DUR=0 F1=.S 
neptune       035 (29.06) DP?=1 DUR=0 F1=.S 
portsweep     035 (30.3) DP?=19 DUR=0 F1=.S 
yaga          035 (31.25) DP?=21 DUR=0 F1=.S 
tcpreset      035 (34.62) DP?=23 DUR=0 F1=.S 
named         035 (36.98) DP?=53 DUR=0 F1=.S 
named         035 (40.57) DP?=53 DUR=0 F1=.S 
neptune       035 (54.5) DP?=21 DUR=0 F1=.S 
portsweep     035 (59.62) DP?=143 DUR=0 F1=.S 
netcat        037 (100) DP?=53 F1=.S 
portsweep     037 (34.96) DP?=514 F1=.S 
imap          037 (80.04) DP?=143 F1=.S 
guesspop      037 (81.52) DP?=110 F1=.S 
ls_domain     037 (84.1) DP?=53 F1=.S 
guesstelnet   040 (42.48) SA2?=005 
ls_domain     042 (38.5) DP?=53 DUR=0 
named         042 (53.03) DP?=53 DUR=0 
resetscan     042 (74.74) DP?=21 DUR=0 
dict          044 (50.59) SA1?=118 
imap          046 (42.56) SA2=016 SA1?=117 F2=.AP F3=.AF 
guest         046 (55.36) SA2=016 SA1?=118 F2=.AP F3=.AF 
guessftp      046 (96.16) SA2=016 SA1?=118 F2=.AP F3=.AF 
ncftp         046 (97.71) SA2=016 SA1?=118 F2=.AP F3=.AF 
crashiis      046 (97.95) SA2=016 SA1?=117 F2=.AP F3=.AF 
ncftp         046 (99.78) SA2=016 SA1?=118 F2=.AP F3=.AF 
sshprocesstab 046 (60.09) SA2=016 SA1?=118 F2=.AP F3=.AF 
sechole       048 (79.82) SA0?=083 
ppmacro       048 (95.75) SA0?=016 
queso         050 (100) DP=80 F1=.S W6?=.11-Feb-9 
ftpwrite      052 (100) F2=.AP W6=.PORT W8?=.STOR 
teardrop      054 (100) DUR?=188 W7=. 
processtable  054 (34.86) DUR?=1636 W7=. 
back          054 (36.66) DUR?=28 W7=. 
arppoison     055 (100) DP=25 DUR?=42 
casesen       055 (100) DP=25 DUR?=6499 
ntfsdos       055 (56) DP=25 DUR?=188 
teardrop      055 (99.86) DP=25 DUR?=188 
arppoison     056 (98.68) DUR?=55 W1=.^@EHLO 
ntfsdos       056 (99.98) DUR?=97 W1=.^@EHLO 
 


