Learning Models of Network Traffic for Detecting Novel Attacks

by Matthew V. Mahoney and Philip K. Chan
Florida Institute of Technology Technical Report CS-2002-08

{mmahoney,pkc} @cs/fit.edu

Abstract

Network intrusion detection systems often rely on matching patterns that are gleaned from known
attacks. While this method is reliable and rarely produces false alarms, it has the obvious disadvantage that
it cannot detect novel attacks. An alternative approach isto learn amodel of normal traffic and report
deviations, but these anomaly models are typically restricted to modeling | P addresses and ports, and do not
include the application payload where many attacks occur. We describe a hovel approach to anomaly
detection. We extract a set of attributes from each event (IP packet or TCP connection), including stringsin
the payload, and induce a set of conditional rules which have a very low probability of being violated in a
nonstationary model of the normal network traffic in the training data. 1n the 1999 DARPA intrusion
detection evaluation data set, we detect about 60% of 190 attacks at afalse larm rate of 10 per day (100
total). We believe that anomaly detection can work because most attacks exploit software or configuration
errors that escaped field testing, so are only exposed under unusual conditions.

1. Introduction

Theinternet is one of the most influential innovations in recent history. Though most people use
the internet for productive purposes, some use it as a vehicle for malicious intent. Asthe internet links
more users together and computers are more prevalent in our daily lives, the internet and the computers
connected to it increasingly become more enticing targets of attacks. Computer security often focuses on
preventing attacks using usually authentication, filtering, and encryption techniques, but another important
facet is detecting attacks once the preventive measures are breached. Consider a bank vault, thick steel
doors prevent intrusions, while motion and heat sensors detect intrusions. Prevention and detection
complement each other to provide a more secure environment.

How do we know if an attack has occurred or if one has been attempted? This requires sifting
through huge volumes of data gathered from the network, host, or file systemsto find suspicious activity.
There are two general approaches to this problem: signature detection (also known as misuse detection),
where we look for patterns signaling well known attacks, and anomaly detection, where we look for
deviations from normal behavior. Signature detection works reliably on known attacks, but has the obvious

disadvantage that it is not capable of detecting new attacks. Though anomaly detection can detect novel

attacks, it has the disadvantage that it is not capable of discerning intent. It can only signal that some event
isunusual, but not necessarily hostile, thus generating false alarms.

Signature detection methods are well understood and widely applied. They are used in both host
based systems, such as virus detectors, and in network based systems such as SNORT (Roesch, 1999) and
BRO (Paxson, 1998). These systems use a set of rules encoding knowledge gleaned from security experts
to test files or network traffic for patterns known to occur in attacks. As new vulnerabilities or attacks are
discovered, the rule set must be manually updated.

How do security experts discover new unknown attacks? Generally, the experts identify something
out of ordinary, which triggers further investigation. Some of these investigations result in discovering new
attacks, while othersresult in false alarms. |dentifying something out of ordinary is essentially anomaly
detection. From their experience, security experts learned a model of normalcy and use the model to detect
abnormal events. On the contrary, rather than learned, a model of acceptable behavior can also be specified
by humans aswell. For example, firewalls are essentially manually written policies dictating what network
traffic is considered normal and acceptable.

We desire to endow computers with the capability of identifying unusual events similar to humans
by learning from experience. Classical machine learning problems are classification tasks--given examples
of different classes, learn amodel that distinguishes the different classes. However, in anomaly detection,
we are essentially given only one class of examples (normal instances) and we need to learn a model
that characterizes and predicts the lone class reliably. Since examples of the other classes are absent,
traditional machine learning algorithms are less applicable to anomaly detection.

Our investigation in this paper focuses on devising and eval uating machine learning al gorithms that
generate models for detecting anomalies. Particularly, we concentrate on anomalies in network traffic. Our
approach is unique in three respects. First, we model the application payload, a more difficult problem than
modeling just | P addresses and port numbers, as most network anomaly detectors do. Second, we use a
nonstationary model, in which the time since an event last occurred is significant, and the frequency of
occurrence isnot. Third, we develop arandomized agorithm for finding the type of conditional rules that
are most useful for anomaly detection. We test our system on the 1999 DARPA intrusion detection

evaluation data set (Lippmann et al., 2000), which simulates alocal network under attack.

Therest of this paper is organized asfollows. In Sedion 2, we describe related work in anomaly
detedion. In Sedion 3, we describe the LERAD agorithm (leaning rules for anomaly detedion). In
Sedion 4 we describe the 1999DARPA intrusion detedion evaluation data set. In Sedion 5, we test
LERAD on this st and compare the results with two ealier versions that use fixed rules. In Sedion 6, we

describe the dtadksin the data set and analyze how they were deteded. In Sedion 7, we summarize

2. Related Work

Anomaly detedion is aharder problem than signature detection because signatures of attacks can
be very precise but what is considered normal is more astrad and ambiguous. Rather than finding rules
that charaderize dtadks, we wish to find rules that charaderize normal behavior. Sincewhat is considered
normal could be different in diff erent environments, a distinct model of normalcy can be learned
individually. Hence, in our approach, customization to individual environment is automated via machine
leaning. This contrasts to manually written polices of normal behavior that require manual customization
at ead environment. Moreover, sincethe models are austomized to ead environment, potential attaders
would find them nore difficult to circumvent than manually written pali cies which might be lesscustomized
due to inexperienced system administrators who donot change the default parameters and pdicies supplied
by the vendors. Much of the research in anomaly detedion uses the gproach of modeling rormal behavior
from a (presumably) attadk-freetraining set. Becaise we cannot predict all possble non-hostil e behavior,
fase darms areinevitable. Thus, the rules must also generate ascore or ranking refleding the probabilit y
of hostility, so that alarms can be prioriti zed.

Theideaof anomaly detedion iswidely attributed to Forrest et al. (1996. Forrest reasons that our
own immune system can provide ideas for more dfedive intrusion detedion techniques. Part of our
immune system functions by identifying urfamili ar foreign objeds and attadking them. For example, a
transplanted organ is often attadked by the patient'simmune system because the organ from the donor
contains objeds different from the onesin the patient. To reduce and control rejedion, doctors utili ze
drugs. Based on this observation, she found that when a vulnerable UNIX system program or server is

attacked (for example, using a buffer overflow to open aroat shell), that the program mekes squences of

system calls that differ from the sequences found in normal operation. Forrest used n-gram models, i.e.
recording sequences of n = 3 to 6 calls, and matching them to sequences observed intraining. A scoreis
generated when a sequence observed during detection is different from those stored during training. Other
models of normal system call sequences have been used, such as finite state automata (Sekar et al., 2001)
and neural networks (Ghosh et al., 1999). Notably, Sekar et al. (2001) utilize program counter information
to specify states. Though the program counter carries limited information about the state of a program, its
addition to their model differs from typical n-gram models that solely rely on sequences of system calls.

A host-based anomaly detector isimportant since some attacks (for example, inside attacks) do not
generate network traffic. However, a network-based anomaly detector can warn of attacks launched from
the outside at an earlier stage, before the attacks actually reach the host, than host-based anomaly detectors.
Current network anomaly detection systems such as NIDES (Anderson et al., 1995), ADAM (Barbara et al.,
2001), and SPADE (2001) model only features of the network and transport layer, such as port numbers, IP
addresses, and TCP flags. Models built with these features could detect probes (such as port scans) and
some denial of service (DOS) attacks on the TCP/IP stack, but would not detect attacks of the type detected
by Forrest, where the exploit code is transmitted to a public server in the application payload.

Network anomaly detectors estimate the probabilities of events, such asthat of a packet being
addressed to some port, based on the frequency of similar events seen during training or during recent
history, typically several days. They output an anomaly score which isinversely proportional to probability.
Anomaly detectors are typically just one component of more comprehensive systems. NIDESisa
component of EMERALD (Newmann and Porras, 1998), which integrates the results with host and network
based signature detectors. ADAM is aBayes classifier with categories for normal behavior, known attacks,
and unknown attacks. SPADE isa SNORT plug-in.

Most current anomaly detectors use a stationary model, where the probability of an event depends
on its average rate during training, and does not vary with time. However, using the average rate could be
incorrect for many processes. Paxson and Floyd (1995) found that many network processes, such as the
rate of a particular type of packet, have self-similar (fractal) behavior. Events do not occur at uniform rates
on any time scale. Instead they tend to occur in bursts separated by large gaps on all time scales. Hence, it

is hot possible to predict the average rate of an event over atime window by measuring the rate in another

window, regardless of how short or long the windows are. An example of how a stationary model failsin an
anomaly detector would be any attack with alarge number of events, such as a port scan or a flooding
attack. If the detector correctly identifies each packet as anomalous, then the user would be flooded with

thousands of alarmsin a few minutes.

3. Learning Rulesfor Anomaly Detection (LERAD)

In this section, we introduce the three ideas that we believe are key to anomaly detection: First we
extend the network traffic model to include alarge number of attributes, including the application payload.
Second, we introduce a honstationary model, in which the probability of an event (an attribute having some
value) depends on the time of its most recent occurrence, and not on its average frequency. Third, we
introduce an efficient algorithm for selecting good rules for anomaly detection from arule space that is
exponentially large in the number of attributes.

Thefirst two ideas were developed in two earlier versions of our current system, a packet header
anomaly detector, or PHAD (Mahoney and Chan, 2000), and an application layer anomaly detector, or
ALAD (Mahoney and Chan, 2001). LERAD extends these ideas by replacing the fixed set of ruleswith an
algorithm for selecting them based on the training data. All of our systems were developed and tested on
the 1999 DARPA off-line intrusion detection evaluation data set (Lippmann et a., 2000), by training them
on attack free network traffic and evaluating them by the number of detected attacks at a given false alarm

rate.

3.1. Extending the Attribute Set

Our first system, PHAD, extendes the four attributes normally used in network anomaly detection
systems (source and destination | P address, source and destination port numbers) to 33. We simply divide
up the Ethernet, 1P, and transport headers (TCP, UDP, or ICMP) into fields of 1 to 4 bytes, as appropriate
for each protocol. In testing, we discovered that many attacks could be detected because of unusual values
inthesefields. In addition to IP address anomalies, we found that some attacks generate unusually small

packet sizes, unusual combinations of TCP flags (e.g. urgent data, missing acknowledgements, reserved

flags), |P fragmentation, and unusual TCP options. In addition, we compute checksums and compare them
with the checksum fields, and we found that some attacks that generate UDP or ICMP checksum errors.
Surprisingly, we did not find any attacks that generate anomal ous port numbers. This might be due to the
global model we use. We simply record a set of allowed values (those seen in training) for each packet
header field. We do not make this set conditional on other attributes, as we do in our later models.

Our next system, ALAD, extends our network model to the application layer. Instead of modeling
single packets, asin PHAD, we model incoming TCP connections to the well known server ports (0-1023).
Although this misses a few attacks that exploit IP, UDP, ICMP, or higher numbered ports (such as X
servers), it does (or should) catch most attacks against servers, which usually use TCP.

ALAD aso introduces conditional rules. With PHAD, we assigned a probability p that an attribute

(field) X would have a particular value x, and then an anomaly score of 1/p. In other words,

p=Pr(X=X)

A more general (and useful) model would assign a probability to a set of attributes given that another set has

some particular values. The most general formiis,

p=Pr(X=x,Y=vy,..|A=a,B=D,..)

We call the condition A= a, B = b, the antecedent, and the result X = x, Y =, ... the consequent.
ALAD usesfiveruleforms or models.
1. Pr(source |P address | destination | P address)
2. Pr(source IP address | destination | P address, destination port)
3. Pr(destination IP address, destination port)
4. Pr(TCPflags (firgt, next to last, and last packet) | destination port)
5. Pr(keyword | destination port)
These models were sel ected because they were found experimentally to give good results

individually on the DARPA IDS evauation, out of about 15 formsthat we tried. The first four models are

similar to conventional anomaly detectors. Since we monitor only incoming traffic, the destination means
the server under attack. The first two rule forms model the set of users of a private (password protected)
service, either on a per host and per server basis. The third isintended to detect probes, attempts to access
nonexistent hosts or services. The fourth detects malformed or interrupted connections. The fifth models
the application layer, and detects some malformed server requests. A keyword is the first word (delimited
by spaces or tabs) on alinein the header part of the server request (indicated by a blank line separator). For
example, the keywords we observe for port 80 (HTTP) in the DARPA training data are: Accept-Charset:,
Accept-Encoding:, Accept-Language:, Accept:, Cache-Control:, Connection:, GET, Host:, If-Modified-
Snce;, Negotiate:, Pragma:, Referer:, User-Agent:.

We should point out a philosophical difference between PHAD and ALAD. With PHAD, we used
amachine learning approach by selecting every conceivable attribute and | etting the program figure out
which ones are useful. It turned out that about a third of them were. With ALAD, we used an ad-hoc
approach to select afew (conditional) rules from the huge space of possibilities. This proved useful (we
showed that port numbers can detect attacks in a conditional setting) but there are probably many good rules
that we did not think of. With LERAD, discussed in section 3.3, we continue to model TCP connections,
but we return to the machine learning approach by selecting a large number of attributes, whether we think
they are useful or not, and let the algorithm figure it out. But rather than select from the small set of
unconditional rules, LERAD selects from the much larger space of conditional rules. The algorithm makes
use of the special form for rulesin a nonstationary model, used by al three of our systems, which we will

describefirst before returning to LERAD.

3.2. Nongtationary Event M odeling

Before the 1995 study by Paxson and Floyd, it was widely believed that network traffic could be
modeled as a stationary process, i.e. independent of time. Although we may observe short term bursts of
traffic of a particular type (say, an FTP data transfer), it was believed that these events would average out if
our observation window were long enough. However, thisisincorrect, which is unfortunate because
stationary processes are easier to model than nonstationary ones, although the problem is not

insurmountable.

To illustrate how nonstationary processes might be modeled, suppose that we observe a sequence

of 20 events with the following outcomes, and we wish to predict what the next one will be.

11111111110000000000

If we assume that the source is memoryless (one type of stationary source), then we count ten ones and ten
zeros, and estimate Pr(1) = 1/2. However, real systems have memory, and the sequence strongly suggests a
change of state midway through the sequence. Therefore, Pr(1) should be much smaller than 1/2.

Intuition suggests that recent history isamore reliable predictor of the immediate future than
events that happened longer ago. Suppose that we base our prediction on just enough of the history so that

each outcome is observed at least once. Then our history is:

10000000000

By counting, we estimate Pr(0) = 10/11 and Pr(1) = 1/11, which agrees more closely with intuition.
Another way of modeling thisis to assume that the probability of an event isinversely proportional to the
timet sinceit last occurred. For the event 1, we havet = 11, so again we have Pr(1) = 1/11.

Now let us ask a different question. We did not say that O and 1 are the only possible outcomes.
What is the probability of a novel outcome, such as5? In this case, we can examine the entire history of n=
20 events and observe that r = 2 of them are novel, i.e. thefirst event, 1, and the eleventh event 0. Based on
this, we would have Pr(not O or 1) = r/n = 2/20. In fact, thisis known as the PPM C method of estimating
the probability of novel eventsin some data compression models (Bell, Witten, and Cleary, 1989). Itisnot
the only model of novel events, and it has some shortcomings (e.g. when n = 1), but it is what we use in our
systems.

Our nonstationary model makes two assumptions. First, by our example, we see that the frequency
of an event isirrelevant, sinceit is only the time since the last occurrence that matters. Thus, by our
assumption, all observed values are equally likely. For this reason, we are only interested in novel events,

which have alower probability. By our second assumption, we model this probability as r/n, where there

arer unique values out of n observations. Thus our nonstationary model consists of r, n, and the set of
observed values. For this example we have the set of observed values{0, 1}, and thevaluesr =2 and n =
20.

Now let us consider the cae where we train our system on known attadk-freedata and test it on
data possbly containing attadks. It might not be posshble to guaranteered datato be atad freg but those
are the conditionsin the DARPA evaluation, so we will use them for now. Suppose that we train on the

same 20 events as before, and then begin monitoring for attads, and we observe the following.

1111111111000000000 0000022222

In this example, eat of the“2” events are anomalous. We would assgn an anomaly score of L/p= n/r =
252 =125tothefirst “2", and 0to the rest because the event isno longer novel at this point. However,
thiswould not be corred becauseif “2" signals an attadk, future atacdks of the same type would be missed.
To avoid this problem, we should not add “2” to the model. But by our nonstationary argument, we know
that subsequent values of “2" are highly likely. If “2" is non-hostil e (we don't know), then we would flood
the user with false darms.

The solution to this dilemmais to introducethe factor t, the time since the last anomaly, as we had
originaly. Thus, we asdgnan anomaly score of tn/r, where there ae n training observations, r unique
values observed, and t events sncethe last anomaly. Inthe éove example, t = 16 for thefirst “2” (the
previous anomaly wasin training), and t = 1 for the others. The value n/r = 20/2 = 10isfixed at the end of
training. Thus, thefirst “2” has an anomaly score of 160, and the others have ascore of 10. By setting the
alarm threshold appropriately, only the first anomaly would generate an alarm.

It ispossble that apadket or TCP connedion could violate more than onerule. In this case, we

add the anomaly scores:

Anomaly score = X tn/r

10

where the summation is over all rulesthat produce anomalies. This sams obvious and gives goodresultsin
pradice, but there is no theoreticd justificaion that we ae avare of for usinga summation. Since aaomaly
scores represent inverse probabiliti es, theory suggests we should multi ply the scores if the rules are
independent. We know that the rules are probably not independent, but without spedfying the dependency

more predsely, we canot say that thisis the optimal way to combine scores.

3.3. Learning Conditional Rules

In Sedion 3.1 we saw that conditional rules have the general form

Pr(X=x,Y=y,..|A=aB=b,..)

In Sedion 3.2 we saw that the rules of interest are those which restrict X, Y, ...to aset of values observed in

training. Also, we can reducethe mnsequent to one dtribute if we trea sets of attributes like (X,Y) as

single atributes, such as

PX,Y =xy|A=aB=b,..)

Thus, we can rewrite our rules to have the form:

If A=a B =D, ...then X =x1, x2, x3...

where x1, X2, x3... are the values observed in training.

Our task isto find “good’ rules of thisform. For PHAD and ALAD, the rules were hand picked,
either by eliminating the aitecadent (in PHAD) or trying a few rules that we believed would give good
results (ALAD). Thereason we did thisisthat the rule spaceishuge. If there ae m attributes, and eadt

one has k; possble values, j = 1...m, then the number possblerulesis:

11

Ziz.mTj=1.mj=i (Kj+1)

That is, for ead attribute i, al of the remaining m - 1 attributes can appea in the antecedent with either one
of the k; all owed values for the j'th attribute, or a“don’t care”. Asan example, for PHAD, with 33
attributes, ranging from 8 to 32 hits, there ae aout 8 x 10'"* possblerules,

Fortunately the problem is not as hard as it seems. We know that a goodanomaly rule is one that
israrely violated and that generates a high score when it is. We know that the anomaly scoreistn/r, and
that n and r can be determined from the training data. Therefore we want ruleswith highn/r. A rule has
highnif alarge number of training examples stisfiesthe antecedent. It has small r if the set of all owed
valuesis small. Supposethat therule“if A =a and B = b then X = x1, X2, or x3" haslarge n and small r
(herer = 3), and pick atraining example & random. If there ae N training examples, then it islikely
(probability n/N) that A =a and B = b. If we pick two examples at random and bah satisfy the antecedent
(which happens with probability n/N?) , then sincer is small, it islikely (probability > 1/r) that the two
values of X will bethe same & well.

This suggests the following strategy. Pick two training examples at random. Then for ead set of
matching attributes, form rules where one dtribute is the mnsequent and the others are conditionsin the
antecalent. For example, if A, B, and C match, with values a, b, and c, then we haveruleslike“if A =a
andB=DbthenC=c","“if B=band C=cthen A =a", and so on. We can also consider subsets of the
matching attributes, such as“if B =bthen A =a", “B =b", and so on. If there ae m matching attributes,
then there ae m(2™ %) possble rules, so we may want to consider strategies for limiting the number of rules
generated when mislarge.

It may turn out that some initial rulesturn out to be poar when fully trained. For example, the rule
“if A =1then B = 2" after trainingmight be “if A =1thenB =2, 3, 4, 5...” withlarger, or it may be that A
israrely 1 (small n). Fortunately, both cases can be determined fairly quickly by sampling the training set
rather than testing every example to compute n and r exadly.

It may also turn out that after training that some rules are redundant. For example, suppose we

have the following threerules:

12

e RLA=1

e R22B=2

e R3ifA=1thenB=2

Since A isalways 1 (at least in training), thereis no need to test for this conditioninrule R3, soitis
equivalent to rule R2. We could remove either of these rules and have the same constraints on the test data.
Also, because rules R2 and R3 would generate anomalies at the same time (for example, if A=1and B =
3), thiswould affect the score. Ideally, each consequent should be counted only once (we believe).

Our strategy for removing redundant rulesis to apply a coverage test to a sample of the training
data. If arule does not predict any values not already predicted by other rules, then we discard it. For
instance, rule R2 predicts every value of B. Since rule R3 does not predict any additional values, we
discard it. Sincethe rulesthat are discarded depends on the order in which we select them, we start with the
rules with the highest n/r (estimated on the sample) first. In case of atie, we pick the rule with fewer
conditions in the antecedent firgt, in this case R2.

We mentioned that r/n isjust one way to estimate the probability of a novel event, and not
necessarily the best. In particular, it does not distinguish between the case where al of the novel events
happen at the beginning of training and the case where the novel events are spread throughout the training
data. Inthelatter case, we would expect the novel events to continue, generating alot of falsealarms. To
eliminate these types of rules, we simply discard rules that generate anomalies near the end of the training
period (e.g. in the last 10% of the data). Stated another way, we know that any anomaly in the training data

isafase aarm, so we eliminate those rules that are expected to generate most of them.

3.4. The LERAD Algorithm

We are now ready to describe the LERAD algorithm.

1. Generateruleswithinitial n/r = 2/1 on L randomly selected pairs of training examples.
2. Coverage test: remove rules that do not predict any values (on a small sample S) not already predicted
by rules with higher n/r (estimated on S).

3. Trainon thefull training set, removing any rule that generates anomalies in the last E examples.

13

As an example, suppose that we have the following training data, with examples T1 through T6. For the
coverage test, we use T1-T4 as our sample S, although in general we would sample uniformly, which

requires an extra pass through the training data. WeletL =1and E = 1.

Example A B C D
T1 (sample) 1 2(R2) 3 4
T2 (sample) 1 2(R2) 3 5
T3 (sample) 1 3(R1) 4 5
T4 (sample) 0 2(R2) 3 5
T5 1 5 3 5
T6 (end) 1 3 3 5
T7 (start of test) 1 8 3 5
T8 (test) 1 8 3 5

Table1l. Exampletraining datafor LERAD (with values marked during the coverage test)

In step 1, we pick two training examples at random, say T1 and T2. These may be selected either
fromthe S (T1-T4) or fromthe full set (T1-T6). Inour implementation of LERAD, we generate rules by
selecting up to 4 matching attributes in random order, and then generating one rule for each match, with the
first match being the conseguent and the remaining matches being added to the antecedent. For example,
T1 and T2 have 3 matching attributes A, B, and C. If we select these in random order, say B, C, A, then the
ruleswould be:

e RLB=2
e R2IfC=3thenB=2
e R3IfA=1landC=3thenB=2.

After selecting L pairs of examples, we apply the coverage test. In our example, R1-R3 are the
only rules. Wefirst train them on S, updating n, r, and the list of observed values. We then sort them by
decreasing n/r, or by increasing number of conditions in the antecedent if equal.

¢ R2ifC=3thenB =2 (nr=3/1)

14

e« RL:B=2o0r3(nr=4/2)

e R3ifA=1landC=3thenB=2(n/r=2/1)

Next we mark the values in S starting with the rule with highest n/r, whichisrule R2. It marks column B
for T1, T2,and T4. Rule R1lisnext. It marksthe only remaining value in column B not already marked, in
T3. Rule R3 would have marked column B for T1 and T2, but because these are both already marked, the
ruleisremoved. Thisleaves uswith the following rules:

e RL:B=2o0r3

¢« R2ifC=3thenB=2

After training on the full set (T1-T6) we have:

e RLB=235(nr=6/3

e R2ifC=3thenB=2,3,0or5(nr=5/3)

Because T6 isin the last E examples, then we remove rule R2 because the anomal ous value (3) was
observed there for the first time. Thisis not anomalous to rule R1 because the value 3 was already seenin
T3. Soour fina set of rulesisjust {R1}.

Once we are done training and start testing, we assign anomaly scores of X tn/r for each violated
rule, wheret is the time since the last anomaly for that rule, whether during training or testing, and the
summation is over all rulesthat were violated. For example, supposethat T7 in Table 1 isthe start of
testing. Thisexample violates rule R1, which hasn/r = 6/3. The last anomaly for R1 occurred at time T5,
sot=2. Thus, the anomaly scoreistn/r = 2(6/3) = 4. If we had kept rule R2 with n/r =5/3 and t = 1 (since
T6 isthe last anomaly), then it would also be anomalous and generate a score of 1(5/3) = 1.67 for atotal
anomaly score of 5.67.

Since training has finished, we do not update the rules, but we do record that the last anomaly time
for theserulesisnow T7. Thus, T8 isstill anomalous, and rule R1 still hasn/r = 6/3. However, tisnow 1

(since T7 also violated R1), so the anomaly score is now 2 rather than 4.

3.5. PHAD, ALAD, and LERAD

Although we have focused on LERAD, this system evolved from our earlier work with PHAD

15

(packet header anomaly detedion) and ALAD (application layer anomaly detedion). All three ae
nonstationary models, in that they assgn an anomaly score of % tn/r summed over ead of the violated rules.
The threesystems differ in the dtributes that they monitor, and the types of rules that they represent.

PHAD monitors 33 padket header fields for both incoming and outgoingtraffic. Thereisafixed
rule for ead field, which isa set of allowed values (or more predsely, a set of rangesif there ae more than
32 ddtinct values). Thus, onerule might be“TOS =0, 8, 16, or 192, where TOS is one of the fieldsin the
IP heeader. Inthisexample, nisthe number of IP padketsand r is4. There ae alditiona rulesfor Ethernet,
TCP, UDP, and ICMP.

ALAD monitors the incoming side of TCP connedions to well known server ports on the home
network. ALAD has 5 fixed rule forms, athoughthere may be many rulesfor ead form. For instance, one
formis*“if destination port = x then keyword = y1, y2, y3... yr”. Thereisonerulefor ead observed value
of xin thetrainingdata. In thisexample, nisthe number of timesthat port number x occursin training, and
r isthe number of values of y. Becaise a ®nnedion may have several keywords (the first word on alinein
the header), asinge rule may be gplied several timesto asingle mwnnedion. If more than one keyword is
anomalous, then their scores are added.

LERAD monitors the same TCP connedions as ALAD, but it uses the rule learning algorithm
described in Sedion 3.4. Also, it monitors more &tributes and parses the goplication payload dfferently. It
just takes the first 8 words of the payload (some of which may be empty strings) as 8 attributes. Thus, eah
ruleis applied only oncein testing. A rule may have a onjunction of 0to 3 conditionsin the antecalent
and exadly one &tribute in the consequent. An exampleis“if F2=APthen F1=Sor AS’, where F1 and
F2 arethe first and next to last TCP flagsin the connedion, and A, P, and S are the ACK, PSH, and SYN
flags. Inthisexample, thereisone condition in the antecedent, n is the number of connedions where the
antecalent F2 = AP is stisfied in training, and r is2. Unlike ALAD, thereisnot arule for every possble

value of F2.

4. The DARPA IDS Evaluation

We developed and tested PHAD, ALAD, and LERAD using the 1999DARPA intrusion detedion

16

evaluation data (Lippmann et al., 2000). The dataisfrom asimulated local network for an imaginary air
force base under attack as shown in Figure 1. The object isto detect as many attacks as possible given off-

line data dumps of the network traffic and other data.

SunOS ||
Solaris | Sniffer

| Cisco Internet
. Router ————
Linux L — Ethernet —

Attacks
Windows ||
NT
Attacks

Figure 1. The 1999DARPA |IDS simulation.

In the original evaluation in 1999 eight organizations suibmitted 18 systems for testing. During the
first phase, the participants were provided with 3 weeks worth of sniffed network traffic frominside and
outside the locd network (both sides of the router), audit logs and nightly file system dumps from four
“victim” hosts running diff erent unpatched operating systems, and BSM (Basic Seaurity Module) logs from
the Solaris madine, which traces system cdls. The data amnsists of two weeks of attadk-freebadcground
traffic for training anomaly detedion systems (weeks 1 and 3) and one week of |abeled attadks. (week 2) for
testing and for training signature detedion systems. Most of the dtadks were taken from seaurity maili ng
lists and cradker-oriented web sites to exploit known vunerabiliti es, and are described by (Kendall, 1999.

After the systems were devel oped, they were tested on two additional weeks (10 days) of datain
which the system was attacked 201times, including 63 attadks of types not seen duringweek 2. Other
attacks were varied to make them stedthy or hard to deted, for example, using slow port scanning or
varying the exploit code to elude signature detedion. The intrusion detedion systems were evaluated by the
number of attadks deteded and number of false darms. An attadk is counted as deteded if the system

corredly reportsthe | P addressof either the dtadker or target, and the date and time of the dtadk within 60

17

seconds of any portion of the attack. The systems were required to output a score for each alarm so that a
threshold could be used to vary the false alarm rate. Participants were allowed to declare before the
evaluation what types of attacks they were designed to detect. Attacks are categorized by the host operating
system, the type of data where evidence of the attack exists (inside or outside network traffic, audit logs,
BSM, file system dumps), and type of attack (probe, denial of service (DOS), remote to local (R2L), or user
to root (U2R)). Detections of attacks outside the declared categories do not count. Multiple detections of
the same attack are counted only once. The results of the evaluation for the top four performing systems
when the alarm threshold is set to 100 (10 per day) as reported by Lippmann are shown in Table 2. These

systems may use a variety of techniques: both signature and anomaly detection, and both host and network

based methods.
System Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Dmine 41/102 (40%)
Forensics 15/27 (55%)

Table 2. Top officia results of the 1999 DARPA 1DS evaluation, showing number of detections out of the

number of attacks that the system is designed to detect, at 100 false alarms (Lippmann et. al., 2000).

After the 1999 evaluation, the 5 weeks of data were released, including the truth labels for the 201

attacks (date, time, 1P addresses, attack description) in weeks 4 and 5.

5. Experimental Results

We evaluated PHAD, ALAD, and LERAD by training them on 7 days of attack free inside traffic
from week 3, and evaluating them on weeks 4 and 5 using the same criteria and false alarm rate asin the
original DARPA evaluation. We also post-process the alarms by removing duplicates (same | P address)
within 60 seconds of each other, keeping only the highest scoring alarm. This usually improves the

performance of any IDS because it reduces the number of false alarms (which count individually) without

18

reducing the number of detections (of which only one would count). All but a few attacks show some
evidence in the inside network traffic, so to simplify the results we just report all detections. Theinside
network traffic for one day (week 4, day 2) is missing, so we omit the 12 attacks during this period, leaving
189 of the original 201. We also discovered by examining the test data that one attack (an apache2 attack)
was not labeled. We labeled this attack in our evaluation, bringing the number of attacks that our systems
are designed to detect to 190.

The training data from week 3 is 7 days, containing about 12 million I P packets for PHAD, or
35,455 incoming server TCP connections for ALAD and LERAD. Thetest data (weeks 4 and 5) contain
about 20 million IP packets, or 178,099 TCP connections (including incomplete connections during
attacks).

Table 3 summarizes the parameters used for PHAD, ALAD, and LERAD, and the resullts.

19

Parameter PHAD ALAD LERAD
Modeled data All packet headers Incoming server TCP Incoming server TCP
connections connections
Attributes 33fieldsfrom 5: source and 23: date, time, IP
Ethernet, IP, TCP, destination | P address, address bytes, ports,
UDP, and ICMP destination port, TCP duration, length, 3 TCP
packet headers flags, keywords flags, first 8 words
Rules 33 fixed, unconditional 5 conditiona fixed rule | Learned, conditional
on each field forms selected
manually
Anomaly score tn/r tn/r tn/r
Training instances, N 12M 35K 35K
Test instances 20M 178K 178K
Initial rule set About 1100 fromL =
1000 pairs
Rules after coverage 77-85 using |S| = 100
test samples
Final number of rules 33 5forms 56-66 after discarding
anomaliesin last 10%
(E = 0.1N = 3545).
Detected attacks (out 54 (72 including TTL 60 114.1 + 2.3 (averaged

of 190) at 100 false

aarms

artifact)

over 10 runs)

Table 3. Parameters and results summary for PHAD, ALAD, and LERAD.

Table 4 shows how the number of attacks detected depends on the false alarm rate as the alarm

threshold isvaried. For rates up to 200 false alarms (20 per day), LERAD alone detects the most attacks.

At higher rates, the best result is obtained by merging all three systems. To merge systems, we select equal

numbers of the highest ranking alarms from each system and discard duplicate alarms. An alarmis

considered aduplicate if there is a higher ranked alarm identifying the same target | P address and the time

iswithin 60 seconds. Figure 2 shows the same results graphically.

20

False PHAD ALAD LERAD PHAD + PHAD + ALAD + All 3
Alarms (avg.) ALAD LERAD LERAD

5 5 10 4 6 3.2 7 6

10 9 13 15.2 14 9.2 17 11.6
20 21 19 48 21 22.8 258 23.6
50 33 42 86.6 44 54.6 59 49.8
100 54 60 114.6 73 89.4 93.6 85.2
200 56 66 1174 96 110.6 107.8 1174
500 56 72 108 123.6 1204 134.8
1000 56 110 1334 126 144
2000 62 111 142.2 147
5000 86 125 146.8 151.6

Table4. Unofficial number of attacks detected (out of 190) by PHAD, ALAD, LERAD on the 1999

DARPA DS evaluation test data, and their combinations as the false alarm rate is varied. Blank entries

indicate where no measurement was taken because our implementations did not generate enough false

alarms, i.e. LERAD generates |ess than 200 false alarms.

150 —

Combined
100 — LERAD
PHAD
Attacks ALAD
Detected
50
| | | | | | | |
10 100 1000 5000

False Alarms (logarithmic scale)

21

Figure 2. Detection-false alarm graph of Table 4.

5.1. PHAD Results

The complete results for PHAD and ALAD are described in our other papers (Mahoney and Chan,
2001, Mahoney and Chan, 2002), so we only summarize the results here. PHAD initially detected 72 of
190 attacks, or 38%, at 100 false alarms (10 per day). We examined the anomalies that generated the
alarms, and discovered that the most common anomaly wasinthe TTL (timeto live) field, most likely a
simulation artifact. The TTL field isa counter that is decremented each time an | P packet is routed in order
to prevent infinite routing loops. The DARPA evaluation used real hosts for the target, but smulated
background traffic for the local network and Internet by modifying | P addresses from locally synthesized
traffic. We believe the TTL anomalies were the results of the real attacking hosts being a different real
distance from the targets than the real background generating hosts.

When we remove the TTL field from PHAD, it detects 54 of 190 attacks, or 28% (with 100 false
alarms). As expected, many of these attacks exploit implementation flaws at the network and transport
layers. Most of these are probes or denial of service (DOS) attacks. The most common anomalies resulting
in detections occur in the IP fragment field, TCP flags, and I P source and destination addresses. Of the 33

fieldsbesides TTL, 12 generate anomalies that detect at least one attack.

5.2. ALAD Results

ALAD (Mahoney and Chan, 2002) was tested alone and in combination with PHAD. Because
PHAD and ALAD differ in the types of attacks they detect, it is possible to merge the results into one
larger system that detects more attacks than either one by itself. ALAD detects 60 attacks by itself (at 100
false alarms) and 73 when combined with PHAD without TTL. The two systems are combined by taking
equal numbers of top scoring alarms from each system and removing duplicates (within 60 seconds). The
systems can be combined because ALAD is designed to detect mostly R2L attacks in the application
payload. An R2L (remoteto local) attack is where the attacker exploits a vulnerability in a server to

execute commands on the target, although not necessarily as root. Usually thisisaccomplished by sending

22

amalformed server reguest, such as a buffer overflow, in the application payload.

5.3. LERAD Results

LERAD isthe most successful of our anomaly detection systems, detecting an average of 114 out
of 190 attacks, or 60%, at 100 false alarms (10 per day). It detects abroad range of attacks (probe, DOS,
R2L, U2R). Because LERAD examinesonly TCP, it misses a small number of attacks that exploit IP, UDP
or ICMP protocols. Other than these, LERAD detects most of the attacks detected by PHAD and ALAD.

Our version of LERAD extracts 23 features from each incoming TCP connection: date, time, last
two bytes of the destination IP address as two attributes (the first two are fixed, since we examine only
incoming connections), four bytes of the source | P address (as four attributes), source and destination port
numbers, TCP flags for the first, next to last, and last TCP packets (3 attributes), duration in seconds, total
number of bytes transmitted in the application payload, and the first 8 words in the data, delimited by white
space (as 8 attributes). We find that LERAD effectively weeds out attributes that have little or no predictive
value from the rule set, such as the date and time; thus there is little harm done by adding too many
attributes.

In step 1, the rule building phase we select 1000 to 10,000 pairs of training instances and generate
up to four rules from each pair. Selecting L = 1000 pairs, we typically generate about 1050 to 1150 rule
candidates. With L = 10,000 pairs, we generate about 5600-6200 rule candidates, but this does not lead to
any more detections than the smaller set. We used L = 1000 pairs for our results. Also we find no
significant difference in the detection rate whether we sample the pairs of training instances from the full
training set or from the smaller set S of instances selected for the coverage test. For our results we took
pairs from Sto simplify the implementation.

In step 2, the coverage test, we sample |S| = 20 to 100 training instances from the full set and use
these to estimate n/r and remove rules that do not predict any values in this sample not already predicted by
abetter rule (higher n/r). We find that using fewer than 10 samples or more than a few hundred resultsin
fewer detections. The reason that using too many samplesis bad may be that too many rules with poor
coverage are kept. As evidence, we found that we could partially offset the loss of detections with alarge

sample size by imposing the more stringent requirement during the coverage test that arule mark at least

23

two valuesinstead of one. We sorted rules with equal n/r by placing rules with fewer antecedent conditions
first, although doing this does not have a significant effect on the number of detections. The result of the
coverage test isto reduce the number of candidate rules from 1050-1150 to about 80-85, or if we had used
10,000 pairs, from 5600-6200 to about 110-130. We used |S| = 100 samples for the coverage test.

In step 3, we train the rules on the full training set (N = 35,455 instances from week 3), and
remove any rule that generates an anomaly in the last E = 0.1N = 10% of the training data. Thisisan
experimental maximum, producing more detections than using the last 5% or 20% to removerules. This
step reduces the rule set by about 30%. Most of the rules have n at least 10% of the training set and r < 10.
Most rules have one or two conditions in the antecedent.

Since LERAD isarandomized algorithm, it produces a different result for each run. In ten runs,
we observed 112 to 118 detections (average 114.1, standard deviation 2.3, standard error 0.7) using 56 to
67 rules (average 61.2). We found no significant correlation between the number of rules and number of
attacks detected over these runs. Appendix A shows atypical rule set and alist of detected attacks for one

run.

5.4. Run Time Performance

PHAD, ALAD, and LERAD are experimental programs which read the inside tcpdump files from
the DARPA |DS evaluation data set. The data consists of one file per simulated day, totaling 2.9 gigabytes
of training data (about 12 million packets) and 4.0 gigabytes of test data (about 20 million packets). We
focused our software development on maximizing the number of detections rather than for speed and
memory efficiency. Nevertheless, execution time is on the order of afew minutes on modern hardware for
all systems, and memory requirements are quite reasonable, afew kilobytes at most to represent the rule set.

PHAD was implemented as a 400 line C++ program. It runsin 6 minutes under Solaris on a Sparc
Ultra 60 with a 450 MHz 64-bit processor and 512 MB memory and 4 MB cache. Thisisabout 23 seconds
of CPU time per simulated day. The processing rate is 95,000 packets per second for training and 73,000
packets per second for testing.

ALAD and LERAD were implemented in two parts, one to reassembl e the packets into TCP

streams, and a second to perform the algorithm. The reassembly is done by a 400 line C++ program, which

24

runs (one time) for 17 minutes under Windows Me on a 750 MHz Duron processor with 256 MB of
memory. The output of this programis 35,455 TCP training connections stored in a 20 megabyte text file,
and 178,101 connectionsin a 40 megabyte test file. ALAD, a90 line Perl program, processes this datain
60 seconds. LERAD, a400 line C++ program, runs in 30 seconds, out of which 6 seconds are used to train

and construct arule set and 24 seconds to process the test data.

6. Analysisof Detected and Missed Attacks

In this section, we examine each attack in detail, and how it was detected or missed by PHAD,
ALAD, and LERAD. Because LERAD israndomized, we examine five runs and report the average number
of detections. Attack descriptions are due to (Kendall, 1999) and examination of the test data.

The attacksin the 1999 DARPA IDS eval uation are based on known vulnerabilities at the time of
the evaluation. Most of the attacks are from published sources. In most cases, patches to the operating
system or servers were available to thwart the attacks at the time, but these were deliberately not applied so
that the attacks could succeed. By using anomaly detection on this data, we simulate the present day case of
detecting attacks that exploit vulnerabilities that have not yet been discovered.

The attacks used in the DARPA evaluation are classified as probes, DOS, R2L, U2R, and Data,
based on a more detailed classification scheme by (Kendall, 1999). The evaluation includes a security
policy which prohibits probes, which might not otherwise be considered attacks. The policy aso defines
Data attacks as unauthorized copying of secret data or its unencrypted transmission over the network by
authorized users. PHAD, ALAD, and LERAD have no knowledge of the security policy. Table5
summarizes the attacks detected by each system at 100 false alarms, with the LERAD results averaged over

5runs.

25

Attack Type Number PHAD ALAD LERAD (5runs)
Probe 37 22 (59%) 6 (16%) 232 (63%)

DOS 63 24 (38%) 19 (30%) 36.6 (58%)

R2L 53 6 (11%) 25 (47%) 34.8 (66%)
U2R/Data 37 2 (5%) 10 (27%) 20.0 (54%)

Total 190 54 (28%) 60 (32%) 114.6 (60%)

Table5. Number of attadks of ead type deteded by PHAD, ALAD, and LERAD at 100false darms.

In the foll owing sedions, we describe eab attad in detail and how it was deteded. Most attadks

have several instances which exploit the same vulnerability, but may have diff erent sources and targets, and

may differ in other detail s, such aswhat is done to the target oncethe dtadk succeels. In some cases, the

attack may be “stedthy”, modified in ways intended to make it harder to deted. The number of instances

includes the midabeled apache? attad and does not include atadks for which the inside network traffic is

missng (week 4 day 2).

6.1. Probes

A probeisany attempt by a potential attadker to gather information in preparation for an attack.

Probes are prohibited by the simulation’s saurity palicy. Table 6 shows the number of probes deteded by

ead system and the anomaliesthat led to detedion.

26

Probe Number PHAD ALAD LERAD How Detected

illegalsniffer 2 2 1 0 Coincidental false alarms
ipsweep 7 4 0 12 Small Ethernet packet

Is domain 2 0 0 2 Port number, payload

mscan 1 1 1 1 Destination address, port, payload
ntinfoscan 3 0 2 3 Outgoing connection, payload
portsweep 15 10 0 10 FIN without ACK, dest port, source
queso 4 3 0 3 TCPflags

resetscan 1 0 0 1 Source address, duration

satan 2 2 2 2 Destination ports, payload

Total 37 22 6 23.2

Per cent 59% 16% 63%

Table 6. Probes detected by PHAD, ALAD, and LERAD (average) with 100 false alarms.

Illegalsniffer. A compromised host on the local network is run in promiscuous mode to sniff
Ethernet traffic. It is detectable only because it makes reverse DNS lookups to resolve sniffed | P addresses
(which amore careful attacker could have avoided doing). DNSis normally a UDP protocol, so ALAD and
LERAD do not detect it. PHAD detects both attacks by coincidence. Because there are multiple victims
(al hosts on the local network) and the attack is prolonged (hours), any alarm for any host during this
period would be counted as a detection.

IPsweep. The attacker scans ablock of 1P addresses using ICMP ECHO REQUEST packets
(ping). ALAD and LERAD do not monitor ICMP, so they do not detect it. PHAD detects an unusually
small Ethernet packet size (52 bytes) in 4 of the 7 attacks.

Ls domain. The attacker spoofs a backup DNS server to make a DNS zone transfer request,
obtaining alist of al local hosthames and |P addresses. PHAD and ALAD missit. LERAD consistently
detects both attacks because the request is made on TCP port 53 rather than the usual UDP port 53. The
anomaly variesin each run. In 70% of the detections, the TCP port number is anomalous. In the other
30%, the third word (*"@"A) is anomalous in the context of the fourth or fifth word being empty.

Mscan. Thisis asystem administration tool used to test for many well known vulnerabilities.

PHAD, ALAD, and LERAD all detect it. LERAD generates hundreds of duplicate alarms (which are

27

removed during postprocessng) due to the various tests. The highest scores result from anomalous
destination addresses.

NTinfoscan. This probe gathers information about a Windows NT host similar to mscan.

LERAD consistently deteds every attadk with many duplicate darms, mostly in the TCP flags and
applicaion payload. In some caes, LERAD deteds outgoing connedions on a server port, or an incoming
RST-ACK padket (client connedion refused). Inthe goplicaion text, LERAD detedsamissng cariage
return before alinefeed in HTTP requests. There ae dso anomalies due to destination addresses and parts.
ALAD deteds two instances by the unusual HTTP keyword “HEAD”.

Portsweep. The atader tests arange of TCP ports to seewhich ones have servers listening.
LERAD deteds 10 o the 15 attadks, usually becaise they use astedth technique cdled FIN scanning. In
this probe, the atadker sends an ursolicited FIN padket, a request to close the nnedion, athough rone
was opened, and waits for areply, either aFIN-ACK or a RST if no server islistening. A SYN padket
(request to open) would acampli sh the same thing, but a FIN normally does not result in alog entry in the
target. LERAD (and PHAD) detea the probe because thereis no ACK flag to adknowledge the previous
data padket, as would normally be the cae. There ae dso some aomali esinvolving destination addresses
and pats, which would till be deteded in the ebsence of FIN scanning.

Queso. The dtadker identifies the operating system and version of the target by sending a series of
unwsual or malformed padkets. Different operating systems respond in characteristic ways because the
exad response is not spedfied by the protocols. One of the four attacks is against the router and not visible
inthe inside traffic, but LERAD deteds the other threeby anomalous TCP flag combinations: FIN without
ACK (also deteaed by PHAD), SYN + FIN, and SYN + the two reserved flags. ThereisalsoaSYN
padket containing application data, which is all owed by the TCP protocol but rare.

Resetscan. The dtadker tests for listening ports by sending RST padkets, which are not normally
logged. LERAD detedsit by an anomalous urce aldressin 4 of 5 runs, and in one cae by a probe to the
FTP port having a duration of 0 seconds.

Satan. Thisisasystem administration tool that tests for multi ple vulnerabiliti es as with mscan.
Likewise, it iseasily deteded by PHAD, ALAD, and LERAD with multiple darms. Most involve

destination port numbers, but ALAD and one run of LERAD deted the anomalous “QUIT” command in an

28

HTTP connection.

6.2. Denial of Service (DOS) Attacks
A denial of service attack is one which degrades or disables a server, host, or network. The two
most common approaches are to flood the target with data, or to send malformed data causing the target to

crash dueto abug. Table 7 shows the number of attacks detected by each system.

DOS Attack Number PHAD ALAD LERAD How Detected

apache? 4 2 4 4 TCP options, payload, source addr.
arppoison 5 0 0 1.8 Incomplete TCP connections

back 4 0 0 4 Payload, some by duration, length
crashiis 7 0 6 7 Payload, interrupted connections
dosnuke 4 4 0 4 URG flag, interrupted connections
land 1 0 0 0

mailbomb 3 0 3 3 Payload (lowercase commands)
neptune 4 0 0 3 Dest. port, source, coincidence (1)
pod 4 4 0 0 Fragmented | P packets
processtable 3 1 1 3 Source address

selfping 3 0 0 0 (no network traffic generated)
smurf 5 4 0 0 |CMP checksum, source address
syslogd 4 3 0 0 Short | P packet size, source address
tcpreset 3 0 1 2 Improper TCP open/close, source
teardrop 3 3 0 1.2 I P fragments, interrupted TCP
udpstorm 2 2 0 0 UDP checksum

warez 4 1 4 3.6 Source address

Total 63 24 19 36.6

Per cent 38% 30% 58%

Table 7. Denial of service attacks detected by PHAD, ALAD, and LERAD (average) with 100 false alarms.

Apache2. Thisattack exploits the inability of some versions of the Apache web server to handle

very long HTTP requests. A typical attack contains multiple requests each with thousands of lines and

29

looking something like this:

GET / HTTP/ 1.1

User - Agent: si oux
User - Agent : si oux
User - Agent : si oux
User - Agent : si oux

PHAD deteds anomaliesin the TCP options field in two attacks, possbly an idiosyncrasy of the atading
host (red or simulated). ALAD deteds anomalous ource aldresses, aswell as one dtadk where the
anomalous command “x” appeasin placeof “GET / HTTP/1.1". LERAD detedsall four attadks
(including the midabeled one) by various anomalies in the request, such as“HTTP/1.1” or “sioux”. Inthe
training data, the version is always HTTP/1.0. Other alarms are due to improperly closed TCP connedions
caused by the server crashing.

ARPpoison. An attadker who has compromised a host on the locd network disrupts traffic by
listening for “ ARP-who-has’ padkets and sending forged replies. ARP (addressresolution protocol) is used
to resolve | P addresses to Ethernet addresses. Thus, the dtadker disrupts traffic by misdireding traffic &
the datalink layer. PHAD deteds ome anomalous Ethernet addresses, but becaise the padkets do not
contain IP addresses, the darms do not med the DARPA criteriafor detedion. LERAD deteds an average
1.8 of 5 attadks, mostly due to incomplete TCP connedions with long durations or fill ed with nul bytes.

Back. The atadker sendsan HTTP request “GET ////1111111111]..." with 6000-7000s ashes, which
causes ome versions of the Apache web server to consume excessve CPU time. LERAD deteds all four
attacks, usually because the third word (normally the HTTP version) is missng after it truncaes the input to
1000charaders. A few attadks are detected by excessvely long lengths or durations.

CrashllS. This crashesthe 11 Sweb server on Windows NT with avery long, malformed request.
“GET ././1..1.1." LERAD detedsthe 7 attadks in a manner similar to back.

Dosnuke. The atadker crashes Windows (“blue screen of deah") by sending wgent datato the
NetBIOS port, exploitingabug. Normally urgent datain a TCP connedionisrare. It isintended to send
data to the front of the queue & the receéver. PHAD and LERAD deted all four attadks, usually by the TCP
URG flag being set. LERAD also detedsincomplete TCP connedions or unusualy long durations.

Land. Thisattad crashes SunOS 4.1 by sending a spoded TCP SYN padket with the source

30

addressequal to the destination address PHAD, ALAD, and LERAD missthis attack.

Mailbomb. This attadk floods a user with thousands of junk emails. ALAD and LERAD deted
all three dtadks becaise the SMTP “mail” command is lowercase. It is normally uppercase but not required
to be.

Neptune. Thisisaso knownasa“SYN flood’ or “half open” attadk. The dtader floods the
target with SYN padkets with spodfed source aldresses, causing it to exhaust memory and refuse
connedions urtil the spoded connedionstime out. In Solaris 2.6, sending 20 spodfed padketsto ead port
every 10 minutes causes it to refuse connedions for one hour after the atadk stops. A distributed attadk of
this type was used to shut down several major websites (CNN, Y ahoo, Amazon) in 2000 and was used by
the Code Red worm to attack a White House web server. Servers can now defend againgt this attad by
encrypting TCP state information in the a&nowledgment field and reconstructing it when the dient
responds with the first data padket, rather than saving state information.

LERAD deteds 3 of 4 attadks. One of theseisadually a mincidental back attad that occurs at
the same time ayainst the sametarget. The others are due to anomal ous destination ports (attadking
nonexistent servers) and occasional anomalous ource aldresss.

POD. This attadk, also known as “ping of deah”, crashes ©sme older operating system (but none
of the DARPA hosts) by sending an oversize fragmented | P padket that reassembles to more than 65,535
bytes, the maximum all owed by the IP protocol. It iscdled “ping of deah” becaise some older versions of
Windows 95 could be used to launch the dtadk using“ping-l1 65510. PHAD detedsthe dtadk, becaise
the IP padkets are fragmented, which israrein normal traffic. ALAD and LERAD missthe dtack because
they do not monitor ICMP.

Processtable. This attadks exhausts the UNIX processtable by floodng a server with requests.
LERAD detedsall of the atads by anomalous ource aldresses.

Selfping. Thisattadk crashes Solaris with a ping command to the locd host. It isisaued locdly
and generates no network traffic, so it is not deteded.

Smurf. Thisisadistributed network floodng attadk initiated by sending |CMP ECHO REQUEST
padkets (ping) to a broadcast addresswith the spodfed source aldressof thetarget. The target isthen

flooded with ECHO REPLY padkets from every host on the broadcast address PHAD deteds4 o 5

31

attacks: one anomalous source address and 3 ICMP checksum errors. The checksum errors could be bugs
in the program that was used to simulate what a smurf attack should look like in the DARPA simulation.
ALAD and LERAD do not monitor ICMP and did not detect the attack.

Syslogd. Thisattack crashes the syslogd remote logging service by sending a UDP packet with a
spoofed source | P address that cannot be resolved by DNS. PHAD detects 3 of 4 attacks, two unusually
short | P packets and one anomal ous source address. ALAD and LERAD do not monitor UDP.

TCPreset. Thisattack listensfor TCP SYN packets on a compromised host on the local network
and immediately sends a spoofed RST (connection refused) packet, disrupting traffic. LERAD detects two
attacks by an anomal ous source address and by lone TCP packets without SYN and FIN/RST to open and
close the connections.

Teardrop. Thisattack reboots the Linux host by sending a fragmented 1P packet that cannot be
reassembled because of a gap between the fragments. PHAD detects all the IP fragments, which rarely
occur in normal traffic. LERAD detects 2 of 3 attacks due to unrelated TCP connections on the target
having unusually long durations and not being closed when the target reboots.

UDPstorm. An attacker floods the local network by setting up a loop between an echo server and
achargen or another echo server by sending a UDP packet to one server with the spoofed source address of
the other. PHAD detects a UDP checksum error in both initiating packets (but does not detect the actual
storm). ALAD and LERAD do not monitor UDP.

Warez. Thisisa security policy violation in which an FTP server isused to upload (warezmaster)
or download (warezclient) illegal software. ALAD detects 4 attacks and LERAD 3.6 by anomal ous source

addresses.

6.3. Remoteto Local (R2L) Attacks

An R2L attack is where an unauthorized user gains the ability to execute commands on the target.
These attacks usually exploit software errorsin servers or improperly configured systems to gain access.
The attacking code normally occursin the application payload, so we would expect these attacks to be

detected by ALAD and LERAD, but not by PHAD. Table 8 confirms this.

32

R2L Attack Number PHAD ALAD LERAD How Detected

guesspassvd 10 0 3 10 Source aldress dest. port, payload
framespodfer 1 0 1 0 Payload

ftpwrite 2 0 2 2 FTP upload, dest. port, payload
httptunrel 2 0 0 0

imap 2 0 0 2 Destination port, source aldress
named 3 0 0 3 Destination port

ncftp 5 3 5 4 Source/destination address payload
netbus 3 0 2 3 Source aldress unclosed TCP
netcat 4 0 4 34 Source aldress destination port
phf 3 0 2 3 Source aldress payload

ppmaao 3 0 1 1 Source aldress

sendmail 2 2 2 2 Payload, source aldress

snmpget 4 0 0 0 (no inside network traffic)
sdhtrojan 3 0 3 12 Source aldress

xlock 3 1 0 0 Source aldress

Xsnoop 3 0 0 0.2 Coincidental false darm

Total 53 6 25 34.8

Per cent 11% 47% 66%

Table 8. R2L attadks deteded by PHAD, ALAD, and LERAD (average) at 100false darms.

Password Guessing. Inthe DARPA set, these dtadks are variously known as guesstel net,
guessftp, or guesspop depending on the target. An attadk may try afew common passwords, such as guest
or reped the user’'s name, or may try every word in adictionary (dict). ALAD deteds 3 of 10 attadks.
LERAD consistently deteds al ten, mostly by anomalous source aldresses and destination ports, but
occasionally by the use of lowercase “user” and “pass’ FTP commands.

Framespoofer. This attack delivers amaformed HTML messge by email with a hidden frame to
exploit abugin the email client. Only ALAD detedsit with the anomalous keyword “ Content-Transfer-
Encoding:” in the messge.

FTPwrite. Thisattad exploits an improperly configured FTP server in which the home direcory
is not write protected. The dtadker uploads afile .rhosts with contents “+ +’, and isthen ableto rlogin as

user ftp without a passvord. ALAD and LERAD deted both attads. ALAD deteds an anomalous ource

33

addressand an upload on port 20 (FTP), which isused only for downloadsin training. LERAD detedsthe
upload and also an anomalous port 513 (rlogin). Inonerun, it detedsthe anomalous gring “/roat/.rhosts”
(onthe FTP control port), and in another, the string “+" (on the FTP data port).

HTTPtunnel. Thisisabadkdoa which evades afirewall (if one wereto be used) by appeaingto
be aweb browser to communicate with the atadker. It isnot deteded.

IMAP. Thisisabuffer overflow attad on the mailbox server in Linux. Buffer overflow
vulnerabiliti es often exist in C programs that use functions like strcpy() or gets() which do not check the
length of theinput string. If the string overflows the aray (buffer) into which it iswritten, it can overwrite
the return addresson the stadk. Then when the aurrently exeauting function returns, it jumpsto the
overwritten addressinstead. In atypicd attadk, thiswould be the aldressof a short string of machine mde,
supplied as part of the input, which opens a shell to the dtacker. Sinceimap runs as roct on the target, the
attacker would be aleto exeaute abitrary commands as roct.

LERAD deteds 2 of the 3 attacks by anomalous urce aldresses (30% of the time) and
anomal ous destination port 143 (imap) for the other 70%. A destination port anomaly is probably not
redistic, but source aldresses would be becaise an imap server is not public; it requires a passvord to
retrieve mail.

Named. Thisisabuffer overflow inthe DNS server. Instead of openingaroct shell, the
published version of the exploit opensan X client runningasroot on the target. LERAD detedsall 3
attacks, either because destination port 53 is anomalous (the exploit uses TCP rather than UDP) or it deteds
along string of null bytesin the gplication payload.

Ncftp. Thisattadk usesan FTP server’s data port to gain locd network accessto ather servers,
such asauth and SMTP. ALAD and LERAD deteds 4 o 5 attadks by anomalous source and destination
addresses. ALAD also deteds keyword anomalies on ports 21 (FTP) and 113(auth).

Netbus. Thisisabaddoa on the STMP (mail) port. ALAD deteds 2 of 3 attadks by anomalous
source aldresses. LERAD detedsall 3, 2 by source aldressand one by an urclosed TCP connedion.

Netcat. Thisisabadkdoo disguised asaDNSclient. Two of the atads are adually the bregk-in
and setup phases. ALAD and LERAD deted the atadks mostly by anomalous urce aldresses and

anomalous use of TCP port 53 (normally UDP).

34

Phf. Thisattad exploits a badly written CGI script distributed by default with older Apace web
servers. A vulnerable server is attadked by sendingit the URL “http://target/cgi-
bin/phf?Qali as=x%0acommand*, which causes command to be exeauted by target. (Newer versions of
Apadhe have fixed the bug and log the atader’s |P addresg. ALAD deteds 2 attadks, both by anomalous
source aldresses and one by an extra null byte which mysterioudy appeas as a keyword. LERAD deteds
all 3 attadks because the third word is misgng from the HTTP request, a charaderistic of HTTP/0.9 which
isused only by very old clients but still accepted by servers.

PPmacro. Thisisatrojan PowerPoint maao which is delivered as an email attachment. ALAD
and LERAD deted 1 of 3 attadks by an anomalous ource aldress

Sendmail. Thisisan SMTP buffer overflow which gvesroot access It isone of the few attadks
that had to be written spedally for the DARPA simulation becaise no exploit code had been publi shed.
PHAD deteds both attacks by anomalous urce aldresses. ALAD deteds both by source aldressand by
the anomalous keyword “ Sender:” LERAD deteds both attadks because the first word is MAIL instead of
HELO or EHLO, athoughthisislegal SMTP protocol.

SNM Pget. Thisisan outside atadk on the Cisco router which does not generate ay traffic visible
on the inside network. It is not deteced.

SSHtrojan. Thisisafake ssh (seaure shell) client which cgptures the passvord of a user who
unkrowingly triesto log inwith it. ALAD deteds the 3 attadks by anomalous ource aldresses on port 22
(ssh). LERAD deteds one atadk by an anomalous urce aldress

Xlock. Thisisafake xlock screensaver that captures passvords. It can be started remotely on any
UNIX host with an open X server (set by typing xhost +). PHAD deteds one dtadk by an anomalous
source aldress ALAD and LERAD do not deted it becaise they only monitor well known ports (0-1023,
and X normally runs on port 600Q

Xsnoop. This attack monitors keystrokes on any host with an open X server. It isnot deteded
becaise ALAD and LERAD do not monitor port 600Q (One of 5 runs of LERAD produces a incidental

detedion).

6.4. User to Root (U2R) and Data Attacks

35

A U2R attadk is one in which an attacker who already is able to exeaute nonprivil eged commands
(legitimately or not) exploits a flaw in the operating system to exeaute cmmands as another user, usually
root or administrator. In UNIX, thisisusually done by exploiting a vulnerability in a suid root program to
open ashell runringasroot. Examples are gect, fdformat, ffbconfig, loadmodule, perl, ps, and xterm. All
but perl and loadmodule are buffer overflows. Anypw, casesen, sechole, and yaga are Windows NT
exploits. SQLattack exploits abugin adatabase gplicaion runring as arestricted shell to escgpe to a user
level. NTFSdos requires physicd accessto the target to bypassthe operating system’ s fil e protedions by
boaing from afloppy disk and copying or modifyingthe hard disk. The only data atad, secret, iswhere
an authorized user copies or transmits eaet datain violation of a seaurity palicy.

A network intrusion detedion systemis not designed to deted U2R or data dtadks. These are best
deteded by host based systems, by monitoring the system cdls of the programs under attadk, or monitoring
file systems. The DARPA IDS evaluation set provides this data, which was used by many of the original
participants, but we did not useit. Intheory, it is possble to monitor telnet sessons for signs of aU2R
attadk, but it is very difficult to model normal sessons, and impaossbleif the sesson is encrypted using ssh.

NeverthelessALAD and LERAD deted many U2R attadks. Usually they deted anomalous source
addresses during the telnet sesson or the FTP sesson used to upload the exploit code, or simply that the
FTP server isbeing wsed to upload fil es when it was only used for downloadsin training. (Thisis deteced
becaise the first TCP flags on the FTP data port is SYN-ACK instead of SYN). Occasionally LERAD
deteds anomaliesin the exploit code itself asit isbeing uyploaded on the FTP data port. NTFSdos does not
diredly generate ay traffic, but is metimes deteced because of interrupted TCP connedions when the
target isreboaed. Either the durationis unuwsually long, or thereisno FIN or RST flag to close the

connedion. Table 9 shows the U2R and Data dtadks deteded.

36

U2R Attack Number PHAD ALAD LERAD How Detected

anypw 1 0 0 1 Source address

casesen 3 0 3 2.8 FTP upload (3), source address (1)
gject 2 0 1 1 FTP upload, source address
fdformat 3 1 2 1.8 FTP upload, source address
ffbconfig 2 0 1 1 Source address

loadmodule 2 0 0 0

ntfsdos 2 0 0 1.8 Interrupted TCP connection

perl 4 0 0 2 Source address

ps 3 0 0 2 Source address

sechole 2 0 1 1.8 FTP upload (0.2 payload), source
sglattack 2 0 0 1 Source address

xterm 3 0 1 14 FTP upload (0.2 payload), source
yaga 4 1 1 24 FTP upload, source address
secret (data) 4 0 0 0

Total 37 2 10 20

Per cent 5% 27% 54%

Table9. U2R and Data attacks detected by PHAD, ALAD, and LERAD (average) at 100 false alarms.

6.5. Poorly Detected Attacks

We have demonstrated that it is possible to merge the outputs of two intrusion detection systems
(such as PHAD and ALAD) and detect more attacks than either one by itself at the same combined false
alarmrate. In general, an anomaly detection system would not be used by itself, but in combination with
signature detection for known attacks. In addition, a network based system might be used in combination
with a host based system. Merging systems does not always work, however. If one system performs poorly,
then it may drag down the other. Also, they must detect different types of attacks. For example, ALAD +
LERAD does not perform aswell as LERAD alone because the attacks they detect are similar and their
detection rates are quite different.

We wish to test whether our systems could be combined with the systems from the original
DARPA evaluation (some of which use host based or signature techniques) to increase the total number of

detections. For thisto happen, the distributions of detected attacks must be different. In particular, we wish

37

to test whether our systems deted attadks that were poarly deteaed in the original evaluation.

In the original 1999evaluation there were 21 attadk types (77 instances) which were poarly
deteced by al 18 o the original participants. Lippmannet. a. define an attack as “poarly deteded” if none
of the participants deted more than half of the instances with 100false darms. We find that PHAD and
LERAD are aout equally likely to deted a poaly deteded attadk as any other attadk. The poaly deteded
attadks make up 38% of the total set, and about 37% of the dtadks deteded by PHAD or LERAD. Only
ALAD doesworse on the poorly deteded attadks than the others, and then only dlightly. Out of the 60
attacks it deteds, 20 (33%) of them are poarly deteded attadks.

Table 10 summarizes the results for the poarly deteded attadks. The alumn “best orig.” isthe
maximum official number of detedions (blank if zero) for any of the 18 aiginal systemsat 100false darms
asreported by Lippmannet. a. (200Q Table 4). For example, no system deteded more than one of two
instances of Is_domain or any of the threestedthy ipsweep attadks. The mlumns PHAD, ALAD, and
LERAD are the unofficial number of attadks deteded at 100false darms acmrdingto our own
measurements. The valuesfor LERAD are averaged over 5 runs using diff erent random number seeds.

We cattion against comparing our systems diredly to the original participants. The original
evaluation was blind (no accessto test data), and our evaluation is unofficial. In addition, participants may
have excluded some atadks by design, so that they would not count even if deteded. The number of attacks
listed in the table includes the missng data (week 4 day 2) which was avail able to systems that monitored

outside network traffic or used host based techniques.

38

Poorly Detected Attack Number Best orig. PHAD ALAD LERAD
stedthy ipsweep (Probe) 3 1 0.2
Is domain 2 1 2
stedthy portsweep 11 3 9 7
gueso 4 3 3
resetscan 1 1
arppdson (DOS) 5 1 1.8
dosnuke 4 2 4 4
selfping 3

tcpreset 3 1 1 2
warezdient 3 3 2.6
ncftp (R2L) 5 3 5 4
netbus 3 1 2 3
netca 4 2 4 34
snmpget 4

sdhtrojan 3 3 1.2
loadmodule (U2R) 3 1

ntfsdos 3 1 18
perl 4 2
sechole 3 1 1 18
sglattadk 3 1
xterm 3 1 1 14
Total poorly detected 77 15 20 20 432
Total of all attacks 201 54 60 114.6
Per cent poorly detected 38.3% 37.0% 33.3% 37.6%

Table 10. Poorly deteded attadks deteded by the best original system in the 1999evaluation (Lippmann et.

al., 2000 and by PHAD, ALAD, and LERAD (average of 5 runs) at 100false darms (unofficial). The last

row shows the percentage of deteded attadks that were in the original set of poaly deteded attadks.

6.6. Categoriesof Anomalies

We might ask why anomalies dould signal attacks. In ahost based IDS, such as Forrest’s,

anomalies are indicated by unusual sequences of system cdls. We might exped this for some atadks, such

as buffer overflows, where the program is exeauting code not written by the original programmer.

39

However, many of the atadks that we deted are not of thistype, in particular, probes and DOS. Also, many
attacks, including most R2L and U2R attadks, are deteded by anomaliesin the input to the target, which
deted the dtadk even before the target enters an anomalous date. Why should such anomaliesindicae
hostility rather than just unusual but legiti mate behavior?

To answer this question, we cadegorizethe anomaliesinto five groups acarding to what is being
modeled. Two of these ae famili ar from traditi onal network and host based anomaly detedion systems.
Traditional network systems model user behavior in the form of 1P addresses and pats, looking for
unfamili ar clients accessngaservice Host based systemslook for signs that the program isin an unusual
state dter an attack. However, instead of monitoring system cal's, we monitor output over the network.

The threenew caegories are related to modeling inadequately tested software. In one cae, the
target program has a vulnerahility (a bug) which the atadker exploits with unuwsual input on which the target
was never tested. In the second case, the atadking traffic differsin some abitrary way from normal traffic
because the dtadk was not tested in the target’s environment. In the third case, the atadker deliberately
inserts anomaliesin an attempt to attad the IDS with traffic on which it was probably not tested.

Table 11 summarizes the five cdegories of anomalies and the atadks they deted (at least some of

the time) based on the analysiswe did in Sedions 6.1 to 6.4.

40

Anomaly Type Attacks Detected or Partially Detected (out of 56 types) Total

User behavior (source Probe: portsweep; DOS: apache2, neptune, processtable, syslogd, 27
address, FTP upload) warez; R2L : guess, imap, ncftp, netbus, netcat, phf, ppmacro,
sendmail, sshtrojan, xlock; U2R: anypw, casesen, g ect, fdformat,

ffbconfig, perl, ps, sechole, sglattack, xterm, yaga

Induced by successful DOS: apache2, arppoison, back, crashiis, dosnuke, tcpreset, teardrop; 8
attack U2R: ntfsdos

Pattern related to Probe: Is_ domain, mscan, ntinfoscan, queso, satan; DOS: apache2, 18
attack (bug in target) back, crashiis, dosnuke, pod, smurf, teardrop; R2L : ftpwrite, named,
ncftp, netcat; U2R: sechole, xterm

Pattern unrelated to Probe: ipsweep; DOS: apache2, mailbomb, syslogd, udpstorm; R2L : 10
attack (bugin guess, framespoofer, netbus, phf, sendmail
attacking program)

Attempt to evade IDS Probe: portsweep 1

Table 11. Anomaly categories and the attacks that they detect or partially detect .

The following are examples of each anomaly category.

¢ User behavior. Aswith conventional network anomaly detection, we model the range of source IP
addresses that are typically used to access a host or service. We are suspicious of anyone new,
especialy if the service is private or password protected. We include in this category FTP uploads on a
server that is normally only used for downloads, which is how most of the U2R exploits are detected.
(The actual anomaly is a server initiated connection on port 20, the FTP data port, as indicated by the
TCP flags). While this may not be realistic outside the DARPA simulation, a network IDS is not
designed to detect U2R attacks anyway, so we could consider these to be bonus detections.

¢ Induced by a successful attack. These are anomalies output by the target as symptoms of a successful
attack, analogous to the anomal ous system calls detected by a host based system. ALAD and LERAD
do not monitor outgoing traffic, but they do detect interrupted TCP connections when the target crashes
due to a DOS attack.

e Patternsrelated to the attack. These anomalies exploit vulnerabilitiesin the target due to software

errors. The reason these errors exist is because they were not caught in field testing because the inputs

41

required to invoke the eror rarely occur normally. For example, it israre (but legal) to fragment IP
padkets, so if thereisabugin the TCP/IP stad related to reasssembly, it goes undeteded. Teardrop
exploits sich abug, but it must use ararely seen patternto doso.

Patternsunrelated to the attack. Some dtadks have anomali es because the dtadker did not go to the
eff ort of makingthe atadk resemble normal traffic, which varies with ead environment and is difficult
for the dtadker to know. For example, FTP and SMTP all ow either uppercase or lowercase @mmands,
but most client programs use uppercase. The sendmail and one of the FTP passvord guessng attacks
are discovered because they use lowercase cmmmands. These anomalies could be mnsidered bugsin
the dtadking program, becaise the exploits could be eaily modified to hide them if the dtadker knew
the environment.

Evasion. The DARPA simulation did not make much use of the techniques outlined in Ptacek and
Newsham (1998 to evade or attadk a network IDS, such as | P fragmentation, short TTL expirations,
overlapping TCP segments, bad chedsums, and so on. Such techniques probably would have been
caught by PHAD if they had tried to hide an R2L or U2R attadk that might have otherwise escaped
notice The only example of a badfired attempt at evasion is portsweep, where the atadker used FIN

padkets (without an accompanying SYN padket or ACK) to prevent servers from logging the scan.

To summarize, the five types of anomalies are:

User behavior - the dient is unfamili ar.

Induced - the target isin an unwsual state dter an attadk.

Related pattern - the target has a bug because it was tested only under normal conditi ons.
Unrelated pattern - the atadk has a bug because it was not tested in the target’ s environment.

Evasion - the atader guesses that the IDS has bugs that show up under abnormal conditi ons.

7. Conclusions and Future Work

We described a network anomaly detedion system that is unique in threerespeds. First, it usesa

large number of attributes in order to model program behavior in addition to user behavior. Second, it uses

anonstationary model in which the time since an event is sgnificant and the average frequency is not.

42

Third, it efficiently finds a small number of good rules from the huge set of posshiliti es. The system
performswell on the DARPA IDS evaluation data set, deteding a broad range of attads, including those
that were poarly deteded in the original evaluation. We identified threenew caegories of anomalies
related to inadequate software testing and attempts to explait it.

There ae some obvious minor improvements we @uld make to LERAD. We could extend the
model by adding IP, UDP, and ICMP attributes, as well as attributes appropriate for binary application
protocols like DNS. Our analysis of the goplication payload is limited aswell (first 8 words), and could be
extended. LERAD should also be gpropriate for host based systems by analyzing audit 1ogs or BSM
(system cdls) to deted R2L and U2R attacks. The design of LERAD as aflexible machine leaning
algorithm should make such systems just a matter of extrading attributes.

Our system is limited in that it has not been tested in alive environment. Thisis an obvious
drawbadk, but not one which is easy to resolve. In order to conduct areproducible evaluation, the traffic
must be recorded and publi shed, which raises privacy and ethicd isaies. The DARPA evaluation was
simulated, but this raises questions about artifads due to simulation errors (such asthe TTL field) or overly
clean badkground traffic that might make attadks easier to deted. It isvery difficult to simulate the “crud”
found inred traffic (Floyd and Paxson, 2001). One possbility may be to add red traffic (with sensitive
data removed) to the DARPA data set to add badkground noise.

Furthermore, we have asaumed that attadk freetraffic is avail able for training. Thiswould not be
truein ared environment. We exped that having attads in the training data would mask their detedion in
the test data. We have done some preliminary work in this area aad found that when LERAD istrained on
data containing attadks (week 2), that there is a 29% deaease in the detedion of novel attacks and a 33%
deaease in the detedion of repea attadks (at 100false darms).

A common strategy for anomaly detection (e.g. NIDES and SPADE) isto compare short term
behavior (the arrent event) with long term behavior (hours, days, or weeks), under the assumption that the
number of attadks in the training data will be reasonably small. This type of adaptive model does not have
explicit training and test periods, and should keep up with changes to the system as ftware, hardware, and
users are added to the network. AlthoughLERAD uses an explicit training period (with two passs), we

beli eve that an online anomaly detedion system that uses the principles we have leaned from LERAD is

43

feasiblein ared environment. We plan to pursue work in this diredion.

Acknowledgments

Thisreseach is partially supparted by DARPA (F3060200-1-0603.

References

ANDERSON et al. (1995, Deteding unwsual program behavior using the statisticad component of the Next-
generation Intrusion Detedion Expert System (NIDES), Computer Science Laboratory SRI-CSL 95
06, http://www.sdl.sri.com/papers/5/s/5sri/Ssri.pdf

BELL, TIMOTHY, IAN H. WITTEN, JOHN G. CLEARY (1989, Modeling for Text Compresson, ACM
Computing Surveys (21) 557-591

BARBARA, D., N. WU, S. JAJODIA (2001), Deteding Novel Network Intrusions using Bayes Estimators,
Proc. First SIAM International Conference on Data Mining.

FLOYD, S. AND V. PAXSON (2001), Difficultiesin Simulating the Internet, IEEEACM Transadions on
Networking (9) 392-403

FORREST, S., S. A. HOFMEYR, A. SOMAYAJI, T. A. LONGSTAFF (1996, A Sense of Self for Unix
Processes, Proc. IEEE Symposium on Computer Seaurity and Privacy.

GHOSH, A K., A. SCHWARTZBARD, M. SCHATZ (1999, Leaning Program Behavior Profil esfor
Intrusion Detedion, Proc. 1st USENIX Workshop o Intrusion Detedion and Network Monitoring.

KENDALL, KRISTOPHER (1999, A Database of Computer Attads for the Evaluation of Intrusion
Detedion Systems, Masters Thesis, Massachusetts I nstitute of Tednology.

LIPEMANN, R., et a. (2000., The 1999DARPA Off-Line Intrusion Detedion Eval uation, Computer
Networks (34) 579595

MAHONEY, M., AND P. K. CHAN (2001, PHAD: Packet Header Anomaly Detedion for Identifying
Hostile Network Traffic, Florida Tedh. technicd report CS-2001-04.

MAHONEY, M., AND P. K. CHAN (2002, Leaning Nonstationary Models of Normal Network Traffic

for Deteding Novel Attads, Florida Tech. technicd report CS-2001-06.

44

NEUMANN, P., AND P. PORRAS (1999, Experiencewith EMERALD to DATE, Proc. 1st USENIX
Workshop an Intrusion Detedion and Network Monitoring, 73-80.

PAXSON, VERN AND SALLY FLOYD (1999, The Failure of Poison Modeling, [EEEACM
Transadions on Networking (3) 226244,

PAXSON, VERN (1999, Bro: A System for Deteding Network Intrudersin Red-Time, Proc. 7'th
USENIX Seaurity Sympaosium.

PTACEK, T. H. AND T. N. NEWSHAM (1998, Insertion, Evasion, and Denia of Service Eluding
Network Intrusion Detedion, http://www.robertgraham.com/mirror/Ptace&k-Newsham-Evasion-98.html

ROESCH, MARTIN (1999, Snort - Lightweight Intrusion Detection for Networks, Proc. USENIX Lisa
'99.

SEKAR, R., M. BENDRE, D. DHURJATI, P. BOLLINENI (2007), A Fast Automaton-based Method for
Deteding Anomal ous Program Behaviors. Proc. IEEE Symposium on Seaurity and Privagy.

SPADE (2001), Sili con Defense, http://www.sili condefense.com/software/spice/

Appendix A. Typical LERAD Run

Listed below isatypicd rule set generated by LERAD &fter training on 7 days of attadk-freenetwork traffic

from week 3 of the DARPA |IDS evaluation data. This st has 56 rules and deteds 117 out of 190 attadks

with 100false darms (10 per day). Rulesare ordered by deaeasing n/r, which is shown for eat rule. The

attributes are:

¢ DATE as month/day/yea

¢ TIME ashour: minutes: seconds

e SA3, SA2, SAL, SAQ: 4 bytes of the source |P address

¢ DAL, DAO: last two bytes of the destination | P address

e SP, DP: source and destination port numbers

e F1,F2, F3, TCPflagsfor thefirst, next to last, and last incoming padket. Eadh letter shows that the
flagis st asfollows: 1, O (reserved flags), U (urgent data), A (adknowledgment), P (push), S (sync,

open connedion), F (finish, close cnnedion), R (reset, connedion refused). A dat (.) by itself

45

indicates that no flags are set.

¢ DUR: duration in seconds from first to last packet.

¢ LEN: length of application data transmitted in bytes.

¢ W1-WB8: first 8 words of application data, shown with a preceding dot (.) so that empty words can be
seen. Words are delimited on white space (linefeeds, spaces, tabs) and truncated to 8 characters. The

symbol *M* indicates a carriage return and linefeed. The symbol *@ indicates a null byte (ASCII 0).

Table Al. Typical LERAD rule set.

128882/2 if F2=.APthenF1=.S.AS

228718/2 if F1I=.SF3=AFthen F2=.S .AP

314236/1 if DA0=100 then DA1 = 112

412867/1 if W1="@GET then DP = 80

535455/3 if then DA1 =113 112 114

6 10857/1 if SA2=016 then SA3 =172

7 10643/1 if W1="@EHLO then DP =25

8 9914/1 if W5=.MAIL then W3 = .HELO

99914/1 if W3=.HELO then W7 = .RCPT

109898/1 if DP=25 F3=.AF W3=.HEL O then W5 = .MAIL

11 28882/3 if F2=.APthen F3=.AP .AF .R

12 35455/4 if then F1=.S .AF .AS.R

13 34602/4 if F3=.AFthen F2=.S .AP. .AS

14 7645/1 if W5=. then W8 =,

15 7596/1 if W3=. then W7 =,

16 7596/1 if W2=. then W6 =.

17 7596/1 if W2=. then W5 =,

18 29549/4 if F1=.SthenF2=.S . AP. A

19 7365/1 if DUR=0 W2=. then W4 = .

20 35455/5if then F3 = .S .AP .AF .AS.R

21 6823/1if F2=.AP W7=.Mozilla/ then W6 = .User-Age

22 12885/2 if DP=80then W1 = "@GET .

2312867/2 if W1="@GET then W3 = . HTTP/1L.0"M" .align=
24 5827/1 if DP=20then LEN =0

25 10642/2 if F2=.AP W1="@EHLO then W3 = .HELO .MAIL
26 10105/2 if W7=.RCPT then W1 = "@EHLO @HELO
27 10105/2 if W7=.RCPT then W5 = .MAIL .RCPT

28 4814/1 if SA3=172 SA0=050 F1=.Sthen SA2 =016

29 35455/8 if then SA3 =196 172 197 194 195 135 192 152
3012838/3 if DP=25then W1 = A@EHLO . ~@HELO

31 7279/2 if SA0=050 then SA2 = 016 073

32 3521/1 if F3=.AF W5=.http://h then DAO = 100

33 6852/2 if WA=.Referer: then W7 = .Keep-Ali .Mozilla/

34 6824/2 if W7=.Mozilla/ then W4 = .Connection: .Referer:
35 19139/6 if DUR=0 F1=.Sthen DP = 113 25 80 79 22 515
36 18807/6 if DA1=112 then DAO = 050 100 194 207 149 020
37 29549/10 if F1=.Sthen DP =113 25 23 80 135 21 79 22 515 139
38 35455/12 if then DAO = 105 050 204 084 168 148 169 100 194 207 149 020
39 2802/1 if SA1=091 then SA0 = 233

46

40 3545%13if then SA2 =037 016 182 168 169 115 218 027 008 227 073 007 013

41 52232 if SA3=194then SA0 =021 153

42 2497410 if DUR=0then DP =113 25 23 80 20 79 22 1022 515 1023

43 68133 if F3=.AF W7=Mozill & then W5 = .Keep-Ali .http://m .http://h

44 3545%16if then SA1=113 075 112 091 114 115 218 251 060 033 151 248 001 177 216 215

45 21381 if DA0O=100SA1=113then SA2 =016

46 79114 if SA2=016 F2=.AP F3=.AF then SA1 =113 112 114 115

47 1288%/ if DP=80then W4 = HTTP/1.0"M” .Connedion: .Referer: . .Host: .User-Agent:
If-Modified-Sinc

48 3545324 if then SA0 = 105 158 050 204 084 182 233 168 148 169 100 194200$21 149 189 153
020 069 191 234 010 104

49 76346 if DA1=112 SA2=016then DAO = 050 100 194 207 149 020

50 1287314 if DP=80 F1=.Sthen W6 = .User-Age .[en] .Connedi . Accept: .(X11; .http://m .http://h
.03.06.08.16-Mar-9 .23 .11

51 1085712 if SA2=016then DAO = 105 050 204 084 168 148 169 100 194 207 149 020

52 6481 if F2=.AP W6=.PORT then W8 = .LISTAM"

53 18493 if W2="CthenW6 =." .! A X*@DUMB

54 765832 if W7=.thenDUR=0231121084306921247142223111527291854244 3
64 77 78 123 103 3545

55 1283892 if DP=25then DUR=11325023114 110080124 3068999 212420779826 1422
231011152729 13904 902 901 28 69 16 18 5 900 3599 41 33 94 31 44 38 60 96 86 36 90
52 39 19 3600 65 32 61 83 17 34 BWE353 95 57 59 54 35 37 76 89 70 107 3601 77 106 110
109 87 3602 104 43 93 99 67 62 103 71 81 98

56 106484 if W1="@EHLO then DUR=1132502311418012430692124207 798261422
2310111527 29132869 16 185 3599 41 33 94 31 89 38 86 36 90 52 39 19 3600
32618317 3456539557595435377689 70107 3601 77 106 110 109 87 3602 104 43
9399 6762 103 71 81 98

Below arethe atads deteded by the rules above, sorted by the number of the rule that contributed the
gredest propartion of the anomaly score. Attadk names are those used in the DARPA evaluation. The
“Pct.” column shows the percentage contribution of the listed rule. The “anomaly” column shows all
attributes involved in the rule and their values. A “?” indicaes the anomalous value, corresponding to the
consequent. For example, the first line shows that rule 1 contributed to 44.70% of the anomaly score for the
apache? detedion. Rule lis"“if F2=.APthen F1=.S.AS’ The adual value of F1 in the d&tadk is“.AP”

(indicating the TCP connedion was not opened properly). Table A2 shows 111 detedionsrather than 117

because the darms were not postprocessed to remove duplicate darms (within 60 seconds).

Table A2. Attadks deteded by rulesin table Al.

Att ack Rul e Pct. Anomal y

apache2 001 (44.70) F1?=. AP F2=. AP
ej ect 001 (61.92) F1?=. AP F2=. AP

47

apache2 001 (62.37) F1?=. AP F2=. AP
nti nf oscan 001 (98.69) F1?=. AP F2=. AP

t cpreset 001 (99.98) F1?=. AP F2=. AP
nept une 002 (62.67) F1=.S F2?=. A F3=. AF
nscan 003 (99.97) DA1?=118 DA0=100
port sweep 003 (99.99) DA1?=118 DA0=100
dosnuke 005 (41.14) DAl1?=115

ncftp 005 (66.75) DA1?=118

ncftp 005 (75.38) DA1?=118

guesst el net 005 (79.9) DA1?7=118

net bus 011 (99.77) F2=. AP F3?=.S
port sweep 012 (27.42) Fi1?=.F

port sweep 012 (53.83) F17?=.F

queso 012 (55.42) F1?=.F

dosnuke 018 (84.48) Fl1=.S F27=. UAP
dosnuke 018 (88.64) Fl1l=.S F27=. UAP
dosnuke 018 (96.21) Fl1l=.S F27=. UAP
queso 020 (52.17) F3?=.F

nti nf oscan 020 (85.86) F3?7=. AR

port sweep 020 (88.65) F37?=.F

port sweep 020 (99.32) F3?=.F

sat an 022 (100) DP=80 WL?=." @ T"M
apache2 022 (99.99) DP=80 W?=."@@@@Q@Q@Q@@
crashiis 023 (100) Wi=."@ET WB?=.
back 023 (100) Wi=."@ET WB?=.
crashiis 023 (37.22) = N@ET WB?=.
back 023 (45.09) = N@ET WB?=
phf 023 (74.41) = N@ET WB?=.
back 023 (74.42) = N@ET WB?=
phf 023 (83.08) = N@ET WB?=.
phf 023 (85.74) = N@ET WB?=.
crashiis 023 (95.98) = N@ET WB?=.
crashiis 023 (99.69) = N@ET WB?=.
crashiis 023 (99.73) = N@ET WB?=.
casesen 024 (100) DP=20 LEN?=27649
sechol e 024 (100) DP=20 LEN?=32771
ftpwite 024 (100) DP=20 LEN?=6
xterm 024 (99.1) DP=20 LEN?=6075
war ez 024 (99.65) DP=20 LEN?=283619
casesen 024 (99.72) DP=20 LEN?=27649
sat an 024 (99.96) DP=20 LEN?=375

f df or mat 024 (99.98) DP=20 LEN?=156430
port sweep 029 (26.15) SA3?7=202

nti nf oscan 029 (26.16) SA3?=206

port sweep 029 (26.78) SA3?7=209

sql att ack 029 (33.55) SA3?=206

net bus 029 (38) SA3?7=209

per | 029 (39.17) SA3?=209

sshtroj an 029 (39.4) SA3?7=202

guessftp 029 (39.73) SA3?=208

anypw 029 (40.84) SA3?=204
ffbconfig 029 (40.84) SA3?=206

netcat _setup 029 (40.84) SA3?=207

guest 029 (40.84) SA3?=209

guesst el net 029 (40.84) SA3?=209

yaga 029 (40.84) SA3?=209

per | 029 (47.27) SA3?=207

ps 029 (47.27) SA3?=209

guest 029 (52.65) SA3?=153

ps 029 (54.55) SA3?=199

net bus 029 (60.38) SA3?7=209

48

port sweep
net cat _break
mai | borb
mai | borb
mai | borb
sendmai
sendmai
crashiis

ar ppoi son
processtabl e
nept une
port sweep
yaga

t cpreset
naned
naned

nept une
port sweep
net cat

port sweep

i map
guesspop

| s_domain
guesst el net
| s_domain
naned

reset scan
di ct

i map

guest
guessftp
ncftp
crashiis
ncftp
sshprocesst ab
sechol e
ppnacr o
queso
ftpwite
teardrop
processtabl e
back

ar ppoi son
casesen

nt f sdos
teardrop

ar ppoi son
nt f sdos

029
029
030
030
030
030
030
031
035
035
035
035
035
035
035
035
035
035
037
037
037
037
037
040
042
042
042
044
046
046
046
046
046
046
046
048
048
050
052
054
054
054
055
055
055
055
056
056

(74.81) SA3?=153
(41.54) SA3?=206
(100) DP=25 WL?=. @i |
(100) DP=25 WL?=. @i |

(75.69) DP=25 WL?=. @i |
(98.16) DP=25 WL?=. @I L

(99.8) DP=25 WL?=. “@I L

(52.

(100) DP?=23 DUR=0 F1=.S
(100) DP?=23 DUR=0 F1=.S
06) DP?=1 DUR=0 F1=.S
3) DP?=19 DUR=0 F1=.S
DP?=21 DUR=0 F1=.

(29.
(30.
(31.
(34.
(36.
(40.
(54.
(59.

89)

25)

SA2?7=048 SA0=050

S

62) DP?=23 DUR=0 F1=.S
98) DP?=53 DUR=0 F1=.S
57) DP?=53 DUR=0 F1=.S

5) DP?=21 DUR=0 F1=.S
DP?=143 DUR=0 F1=

62)

(100) DP?=53 F1=.S

(34.
(80.
(81.
(84.
(42.
(38.
(53.
(74.
(50.
(42.
(55.
(96.
(97.
(97.
(99.
(60.
(79.
(95

96)
04)
52)

DP?=514 F1=.S
DP?=143 F1=.S
DP?=110 F1=.S

1) DP?=53 F1=.S

48)

SA27?=005

5) DP?=53 DUR=0

03)
74)
59)
56)
36)
16)
71)
95)
78)
09)
82)
75)

DP?=53 DUR=0
DP?=21 DUR=0
SA1?7=118

SA2=016 SA1?=117
SA2=016 SA17?=118
SA2=016 SA17?=118
SA2=016 SA17?7=118
SA2=016 SA1?=117
SA2=016 SA17?=118
SA2=016 SA17?=118
SA0?=083
SA0?=016

.S

F2=.
F2=.
F2=.
F2=.
F2=.
F2=.
F2=.

AP
AP
AP
AP
AP
AP
AP

(100) DP=80 F1=.S W6?=. 11- Feb- 9
(100) F2=. AP W6=. PORT W8?=. STOR
(100) DUR?=188 W=.
(34.86) DUR?=1636 W=.
(36.66) DUR?=28 W=.
(100) DP=25 DUR?=42
(100) DP=25 DUR?=6499
(56) DP=25 DUR?=188
(99. 86) DP=25 DUR?=188
(98. 68) DUR?=55 WL=. "@HLO
(99. 98) DUR?=97 WL=. ~@HLO

F3
F3
F3
F3
F3
F3
F3

AF

. AF
. AF
. AF
. AF
. AF

AF

