
1

Detecting Novel Attacks by Identifying
Anomalous Network Packet Headers

Matthew V. Mahoney and Philip K. Chan
Department of Computer Sciences

Florida Institute of Technology
Melbourne, FL 32901

{mmahoney,pkc}@cs.fit.edu

Florida Institute of Technology Technical Report CS-2001-2

Abstract

We describe a simple and eff icient network intrusion detection
algorithm that detects novel attacks by flagging anomalous field
values in packet headers at the data link, network, and transport
layers. In the 1999 DARPA off-line intrusion detection
evaluation test set (Lippmann et al. 2000), we detect 76% of
probes and 48% of denial of service attacks (at 10 false alarms
per day). When this system is merged with the 18 systems in the
original evaluation, the average detection rate for attacks of all
types increases from 61% to 65%. We investigate the effect on
performance when attack free training data is not available.

1. Introduction

An intrusion detection system (IDS) monitors network
traff ic, operating system events, or the file system to detect
unauthorized attempts to access a system. The two most
common detection techniques are signature detection,
which looks for characteristics of known attacks, and
anomaly detection, which looks for deviations from normal
behavior, signaling a possibly novel attack. Forrest et al.
(1996) showed that novel buffer overflow attacks on UNIX
processes can be detected because they generate unusual
sequences of operating system calls. A variety of machine
learning techniques can be used to learn what is "usual".
For example, a system described by Ghosh et al. (1999)
uses a neural network trained to recognize normal system
call sequences extracted from Solaris Basic Security
Module (BSM) data and Windows-NT audit logs.

However, it is unusual to apply machine learning to
network intrusion detection. The COAST survey of
network IDSs (Crosbie and Price 2000) shows that most
systems are rule based (similar to a firewall), requiring that
the user or network administrator specify what type of
traff ic is allowed. For example, Bro (Paxson 1998)
requires that the operator use a specialized language to
describe allowable network packets. EMERALD
(Newmann and Porras 1998, Porras and Valdes 1998) has

a component which collects network statistics from
(presumably) attack-free traff ic, automating the model
building somewhat, but it still requires the user to specify
which statistics to collect. ADAM (Barbará, Wu, and
Jajodia) is fully automated in this respect, but monitors
only IP addresses, ports, and the TCP flags. Our system
extends this idea to the other packet header fields.

The rest of this paper is organized as follows. In
section 2, we describe how we believe attacks generate
anomalies in network traff ic. In 3, we describe packet
header anomaly detection (PHAD), a simple and eff icient
system that models the set of allowable values for each
field of the data link, network, and transport layer
protocols. In 4, we test the system using the 1999 DARPA
off- line intrusion detection test set (Lippmann et al. 2000)
to show that we detect most probes and many denial of
service attacks. In 5, we improve on these results by using
clustering rather than a hash function to represent the set of
allowable field values. In 6, we merge our results with the
outputs of the 18 original systems that participated in the
1999 evaluation to show an increase in the detection rate
for attacks of all types. Obtaining attack-free data for
training is not always practical, so in Section 7 we
investigate the effects of attacks in this data. In 8 we
discuss the results and future work.

2. How Attacks Generate Anomalies

We believe that attacking network traff ic contains
anomalies for four reasons. First, attacks that exploit bugs
in the victim's software must somehow be unusual, because
any bug that is evoked by normal traff ic would have long
since been detected and fixed. Second, an attacker might
generate anomalies through carelessness, for example,
putting unusual but legal values into the TCP/IP header
fields when the attack requires programming with raw
sockets. Third, probes are necessarily anomalous because
the attacker is seeking information that is known to
legitimate users, who would normally not guess passwords

2

or try to contact nonexistent IP addresses and ports.
Fourth, an attacker may deliberately insert unusual data to
confuse the IDS (Horizon, 1998).

Kendall (1999) describes a number of denial of service
(DoS) attacks that exploit bugs in some TCP/IP stack
implementations. For example.
• Teardrop. The attacker sends fragmented IP packets

with fragments that overlap or have gaps, causing the
victim to crash.

• Land. The attacker sends a TCP packet with a
spoofed source address and port matching that of the
destination, causing a crash.

• POD (ping of death). The attacker sends a fragmented
IP packet that reassembles to one more than the
maximum size allowed by the protocol (65,535 bytes),
causing a crash.

• Dosnuke. The attacker sends a packet containing
urgent data (URG flag set) to the Windows netbios
port, causing Windows to crash.

Other attacks might open a shell to an unauthorized user
(remote to local, or R2L), or may allow a local user to gain
root or administrative privileges (user to root, or U2R).
Our system is not designed to detect these types of attacks.
R2L attacks that exploit bugs in remote servers, such as
buffer overflow vulnerabiliti es, typically use application
layer protocols, which we do not monitor. U2R attacks,
which in UNIX often exploit bugs in suid root programs,
are diff icult to detect from network traff ic because the
input typically comes from user commands or a local file.
It is diff icult to monitor user commands from a telnet
session, and in any case the attack could be hidden either
by launching it from the local console or by using a secure
shell to encrypt the session. We do not detect data attacks
(violations of a written security policy, such as copying
secret files), because our system has no knowledge of that
policy.

3. Packet Header Anomaly Detection

Our packet header anomaly detector (PHAD) is trained on
attack-free traff ic to learn the normal range of values in
each packet header field at the data link (Ethernet),
network (IP) and transport (TCP, UDP, ICMP) layers. For
the most part, the meanings of the fields are irrelevant.
The system only has syntactic knowledge of the protocols,
enough to parse the header, but no more. For example, it
does not reassemble IP fragments or TCP streams, nor
does it do any special processing for bad checksums,
missing or duplicate TCP packets, etc. The only exception
is that the system does compute the IP, TCP, UDP, and
ICMP checksums, and replaces these fields with the
computed values (normally FFFF hex).

To simpli fy implementation, we require all fields to be
1, 2, 3, or 4 bytes. If a field is larger than 4 bytes (for

example, the 6 byte Ethernet address), then we split it i nto
smaller fields (two 3-byte fields). We group smaller fields
(such as the 1-bit TCP flags) into 1 byte field.

During training, we would record all values for each
field that occur at least once. However, for 4-byte fields,
which can have up to 232 values, this is impractical for two
reasons. First, this requires excessive memory. Second,
there is normally not enough training data to record all
possible values, resulting in a model that overfits the data.
To solve these problem, we record a reduced set of values
either by hashing the field value modulo a constant H, or
by clustering them into C contiguous ranges. These
variants are denoted as follows.
• PHAD-H1000 (hashed modulo 1000)
• PHAD-C32 (32 clusters)
• PHAD-C1000 (1000 clusters)
It turns out (in Sections 4 and 5) that the selection of H or
C doesn't matter much because the fields which are the best
predictors of attack usually have only a small range of
values, and we could simply list them.

For each field, we record the number r of "anomalies"
that occur during the training period. An anomaly is
simply any value which was not previously observed. For
hashing, the maximum value of r is H. For clustering, an
anomaly is any value outside of all of the clusters. After
observing the value, a new cluster of size 1 is formed, and
if the number of clusters exceeds C, then the two closest
clusters are combined into a single contiguous range.

Also for each field, we record the number n of times
that the field was observed. For the Ethernet fields, this is
the same as the number of packets. For higher level
protocols (IP, TCP, UDP, ICMP), n is the number of
packets of that type. Thus, p = r/n is the estimated
probabilit y that a given field observation will be
anomalous, at least during the training period. This
estimate is also consistent with PPMC, one of the better
models used to predict novel values in data compression
algorithms (Bell, Witten, and Cleary, 1989).

Table 3.1 below shows the model that results after
training PHAD-H1000 on 7 days of attack free network
traff ic (week 3 of the inside tcpdump files) from the 1999
DARPA IDS evaluation test set (Lippmann et al. 2000).
The first column gives the name of the field and its size in
bytes. The second column gives r and n. The third column
is a partial li st of the r observed values for that field after
hashing. Also present, but not shown, is the time of the last
observed anomaly in each field.

During testing, we fix the model (n, r, and the list of
observed values). When an anomaly occurs, we assign a
field score of t/p, where p = r/n is the estimated probabilit y
of observing an anomaly, and t is the time since the
previous anomaly in the same field (either in training or
earlier in testing). The idea is that events that occur rarely
(large t and small p) should receive higher anomaly scores.

3

Finally, we sum up the scores of the anomalous fields (if
there is more than one) to assign an anomaly score to the
packet.

Packet score = Σi ∈ anomalous fields ti/pi = Σi tini/ri (1)

We assume a nonstationary model in which the best
predictor of future events is the time since the event last
occurred. This accounts for the factor t; as t increases, the
probability of the event drops, so the anomaly score rises.
For attacks (or benign events) consisting of many
anomalous packets during a short period of time, we do not
need to flood the user with alarms after the first detection.

Field (bytes) p = r / n Hashed values
Ether Dest Hi (3) 9/34909810 186, 192, 215...
Ether Dest Lo (3) 12/34909810 9, 88, 215...
Ether Src Hi (3) 6/34909810 186, 192, 219...
Ether Src Lo (3) 9/34909810 88 257 268...
Ether Protocol (2) 4/34909810 48, 54, 310, 864
IP Header Len (1) 1/34669966 69
IP TOS (1) 4/34669966 0, 8, 16, 192
IP Pkt Length (2) 1000/34669966 0, 1, 2, 3... 999
IP Frag ID (2) 1000/34669966 0, 1, 2, 3... 999
IP Flag/Offset (2) 2/34669966 0, 384
IP TTL (1) 10/34669966 2, 32, 60... 255
IP Protocol (1) 3/34669966 1, 6, 17
IP Checksum (2) 1/34669966 535
IP Src Addr (4) 851/34669966 0, 2, 3, 4...
IP Dest Addr (4) 853/34669966 0, 2, 3, 4...
TCP Src Port (2) 1000/27010151 0, 1, 2, 3...
TCP Dest Port (2) 1000/27010151 0, 1, 2, 3...
TCP Seq (4) 1000/27010151 0, 1, 2, 3...
TCP Ack (4) 1000/27010151 0, 1, 2, 3...
TCP Hdr Len (2) 2/27010151 80, 96
TCP Flags (1) 9/27010151 2, 4, 16, 17...
TCP Window (2) 1000/27010151 0, 1, 2, 3...
TCP Chksum (2) 1/27010151 535
TCP Urg Ptr (2) 2/27010151 0, 1
TCP Option (4) 2/1612632 36, 112
UDP Src Port (2) 1000/7565939 0, 1, 2, 3...
UDP Dest Port (2) 1000/7565939 0, 1, 2, 3...
UDP Length (2) 128/7565939 25, 27, 29...
UDP Chksum (2) 2/7565939 0, 535
ICMP Type (1) 3/90288 0, 3, 8
ICMP Code (1) 3/90288 0, 1, 3
ICMP Chksum (2) 1/90288 535

Table 3.1 PHAD-H1000 model of attack-free traffic.

4. Results on the DARPA IDS Test Set

In 1999 the Defense Advanced Research Projects Agency
(DARPA) developed an off line test set for evaluating

intrusion detection systems (Lippmann et al. 2000). The
set consists of a 5 week run of four main "victim" machines
(SunOS 4.1.4, Solaris 2.5.1, Linux Redhat 4.2, and
Windows NT 4.0) on a simulated network (Ethernet,
TCP/IP) with hundreds of hosts and an Internet connection
through a Cisco 2514 router. This setup simulates an
imaginary Air Force base. Eight participating
organizations were provided with three weeks of training
data, consisting of all network traffic (tcpdump files) just
inside and outside the gateway, audit logs, nightly system
file dumps from the four main victims, and BSM data from
the Solaris machine. A few attacks are against machines
other than the four main victims (e.g. the router or DNS
server), in which case the only evidence is network traffic.
The training data consists of two weeks of attack free
traffic (weeks 1 and 3), used to train anomaly detection
systems, and one week in which there are 43 attack
instances, drawn from a set of 64 attack types, used to train
signature detection systems. Most of the exploits were
taken from published sources such as rootshell.com or the
Bugtraq mailing list archives, and are described in
(Kendall, 1999). The attacks are labeled with the date,
time, victim IP address, and a brief description of the
attack.

After several months, the eight developers were
provided with two weeks (weeks 4 and 5) of test data
containing 201 unlabeled instances of the 64 attacks, some
of them modified to make them harder to detect. Each of
the 18 systems (more than one could be submitted)
produced a list of detections by victim IP address, date,
time, and a score from 0 to 1, where higher numbers
indicate greater confidence in the detection. Each system
was evaluated by its detection-false alarm (DFA) curve,
which is the number of correct detections at a given a false
alarm rate, plotted by taking all alarms with scores above a
threshold. An alarm is considered true if it correctly
identifies any of the hosts involved in the attack and the
time of any part of the attack within 60 seconds. Multiple
detections of the same attack are counted only once. After
the evaluation, the test data, attack labels, and the results
from the 18 systems were made available to promote the
development of new techniques in intrusion detection.

We trained each of the PHAD variants on week 3 (7
days attack free) of the inside tcpdump files, then tested the
system on weeks 4 and 5 of the inside tcpdump files. We
did not make any use of the outside traffic, because the
inside data contains evidence of attacks both from inside
and outside the network, although we miss outside attacks
against the router. We did not use the week 1 (attack free)
data in order to reduce computational requirements, and we
did not use week 2 (labeled attacks) because we do not
look for any attack-specific features. We did not use any
of the BSM, audit logs, or file system data.

We used roughly the same evaluation method for our
system as was used in the original evaluation, counting an

4

attack as detected if there is at least one alarm within 60
seconds of the attack, but counting all false alarms
separately. Our evaluation method differs from DARPA's
in how it sorts tie scoring alarms (not specified by
DARPA) in order to achieve a desired false alarm rate.
Initially we tried breaking ties randomly, but this resulted
in scores much lower than the off icial results reported by
Lippmann et al. (1999) for some systems. We found that
this was due to these systems reporting hundreds of alarms
for a single attack (or benign event) and using binary
scoring (always 1). We found that we could improve the
detection rates for these systems by ranking the alarms
according to the time since the previously reported alarm
for the same victim IP address, so that the first alarm in
each burst got the highest ranking. Then we would remove
any alarm if it fell within 60 seconds of a higher ranked
alarm for the same address. For example, if there were
four alarms at times 1, 2, 5, and 7 seconds, then these
would be ordered 1, 5, 7, 2, and the last three would be
discarded since they are within 60 seconds of alarm 1.

DARPA allowed extended time limits for detecting
DoS attacks (3 minutes for selfping, 15 minutes for the
others) so that host-based systems could detect a reboot or
restart. Our evaluation kept the cutoff at 60 seconds. Also,
DARPA made manual corrections due to labeling errors
and false alarms caused by simulation artifacts, which we
did not duplicate because the details were unavailable.

To test our evaluation method, we ran it on the raw
output data of two of the other high scoring participants in
order to duplicate the results reported by Lippmann for a
false alarm (FA) rate of 10 per day (100 over 10 days).
We observed detection rates 4% to 5% higher than the
off icial values for the sets of attacks that these systems
were designed to detect. We believe this error is partly due
to the use of time-ranked sorting of alarms, which should
not help PHAD because tie scores are rare.

We categorized the 201 attacks in the DARPA test set
according to the protocol exploited, based on the brief
descriptions provided by the test set and by Kendall
(1999). All of the 37 instances of 9 probing attacks except
two instances of ls exploit protocols at the transport layer
or below, so PHAD should detect them. Of the 65
instances of 18 DoS attacks, PHAD should detect 11 types
(40 instances). We should also detect 3 instances of one
R2L attack, the backdoor netbus. We will refer to these 78
instances of 27 attack types as in-spec attacks. However,
had we participated in the original DARPA evaluation, we
would not have been permitted to make such a fine
distinction between detectable and undetectable attacks, as
not all attacks appeared in the training set. DARPA
allowed participants to classify their systems by the type of
attack detected (DoS, probe, R2L, U2R, data), evidence
examined (inside tcpdump, outside tcpdump, BSM, audit
logs, file system dumps), and operating system (Solaris,
SunOS, Linux, NT). Had we participated, we would have

chosen the set of all DoS and probe attacks with inside
tcpdump evidence as the best fit to our system.

Our unoff icial evaluation of PHAD-H1000 at 10
FA/day detects 67 of 201 attack instances (33%), of which
53 of 78 (68%) are in-spec by our unoff icial classification.
We detect 29 of 37 probes (78%) and 26 of 65 DoS attacks
(40%), for a combined 55 of 102 (54%) DoS/probe
attacks.

We must caution that any comparison to the
performance of the original participants would be biased in
our favor. We had access to the test data, and even though
we did not use it to train the system or write attack-specific
techniques, simply having this data available to test our
system helps us. For example, we knew, and the original
participants did not, that there is more evidence of attacks
in the inside network traff ic than the outside traff ic.
Furthermore, we wrote our own evaluation program, which
we found to be optimistic.

Nevertheless, we should point out that a 50% detection
rate is considered good. The 18 systems submitted by
eight organizations used a variety of techniques: signature
and anomaly detection, rule based and machine learning,
analyzing network traff ic, BSM, audit logs, and file system
dumps (Barbará, et al.; Ghosh et al. 1999; Lindqvist and
Porras 1999; Neumann and Porras 1999; Porras and
Valdes 1998; Sekar and Uppuluri 1999; Tyson et al. 2000;
Valdes and Skinner; Vigna, Eckmann, and Kemmerer
2000; Vigna and Kemmerer 1999). Table 4.1 shows the
off icial results of the top 4 systems in the original
evaluation reported by Lippmann.

System In-Spec Detections
Expert 1 85/169 (50%)
Expert 2 81/173 (47%)
Dmine 41/102 (40%)
Forensics 15/27 (55%)

Table 4.1. Off icial detection rates (out of the total
number of attacks that the system is designed to detect)
at 10 FA/day for top systems in the 1999 DARPA
evaluation (Lippmann et al. 2000, Table 6).

We examined the top 20 scoring packets for PHAD-
H1000 in detail . Starting with the highest score (FA
indicates false alarm):

1. FA - fragmented TCP header, legal but unusual,
probably due to a misconfigured machine. Normally,
large IP packets are fragmented to 576 bytes (Internet)
or 1500 bytes (Ethernet) because of the packet size
limitations of the data link layer. This packet was
fragmented to 8 bytes (the smallest possible),
fragmenting the 20 byte TCP header. The program
detected that the last 12 bytes were missing (e.g. the

5

checksum), because we make no attempt to reassemble
fragmented IP packets.

2. Teardrop - a fragmented UDP header resulted in an
anomalous header size field.

3. Dosnuke - the nonzero URG pointer was anomalous.
4. FA - same as 1.
5. FA (arppoison) - anomalous Ethernet source address.

In the arppoison attack, a local sniffer spoofs a reply
to the ARP-who-has packet. ARP is used to resolve IP
addresses to Ethernet addresses. The attack causes the
victim to incorrectly address packets, so that they are
not received. This packet does not count as a detection
because the DARPA scoring algorithm requires the IP
address of the victim. Since an ARP packet is not IP,
this information is not available in the packet.

6. FA - TOS = 0x20. This TOS (type of service) value
indicates a high priority IP packet, a normal response
to an SNMP request to a router. However, most
systems ignore the TOS, so this field is usually 0.

7. Portsweep - a fragmented TCP header resulted in
anomalies in the fields past the fragmentation point, in
particular, the checksum. This probe sends a packet to
each well known port (1-1024) to see which ones are
listening. The reason for the fragmentation is not clear,
possibly carelessness by the attacker or an attempt to
confuse the IDS that backfired.

8. UDPstorm - UDP checksum error, possibly due to
carelessness by the attacker. A udpstorm attack is
started by sending a UDP packet to the echo server on
one victim with the spoofed source address and port of
the echo or chargen server of the other victim. The
result is that they echo each other endlessly and waste
network bandwidth. The actual storm was not
detected.

9. FA (arppoison) - unusual destination Ethernet address
in an ordinary HTTP request packet from the victim.
(This detection would succeed if we reported the
source IP address instead of the destination).

10. Pod (ping of death) - fragmented ICMP echo request
packet. Some TCP/IP stacks will crash when they
receive a fragmented IP packet whose total size is
larger than 64K, the maximum in the IP protocol
specification. Normally an ICMP packet would not be
large enough to require fragmentation.

11. Dosnuke - nonzero URG pointer.
12. FA (arppoison) - unusual Ethernet source address.
13. FA - TOS = 0xC8 (high priority, high throughput) in

an ICMP TTL expired message.
14. FA - unusual Ethernet destination address in an NTP

(network time protocol) request.
15. FA - TCP checksum error in a FIN (close connection)

packet.
16. FA - unusual Ethernet source address in an ordinary

ARP packet.

17. Portsweep - FIN without ACK. This is a stealth
technique to prevent the probe from being logged.
Normally, a FIN (connection close) packet to an
unopened connection will simply be dropped. Thus,
any port not listening will send a RST packet, from
which the attacker can determine which ports are
listening.

18. FA - fragmented TCP header, same as 1.
19. Portsweep - TTL = 44. This could be an artifact of the

simulation. It appears that initial TTL values were
usually set to 32, 64, 128, or 255, then decremented at
most 4 times (once per hop). In reality, 20 hops (from
64) would not be unusual.

20. FA - TOS = 0x20, normal SNMP response.

We have observed four ways in which attacks can
generate anomalies.
• The anomaly exploits a bug that usually causes no

problem because the input is normally rare (dosnuke,
teardrop, pod).

• The attacking program has a bug (udpstorm).
• An anomaly meant to hide an attack exposes it instead

(portsweep).
• The victim generates anomalies as a symptom of a

successful attack (arppoison).

None of the attacks were discovered using anomalous IP
addresses or ports, the usual way of detecting probes. As
Table 3.1 shows, anomalous IP addresses would generate
low scores due to their high r values (851-853). Port
number anomalies would never occur, since all H = 1000
possible values occurred in training.

4.1. Run-Time Performance

PHAD inspects 54 bytes of each packet header (more if IP
or TCP options are present). For each of the up to 25
fields (depending on the protocol), the program hashes the
value and stores it in a bit vector (during training), or
checks whether the bit is present. The program also
computes IP, TCP, UDP, and ICMP checksums, which
requires reading the application layer payload as well. The
algorithm is simpler than a typical TCP/IP stack, so we
would expect it to be faster as well.

On A Sparc Ultra 5-10, our implementation of PHAD-
H1000 processes 2.9 Gbytes of training data (tcpdump
files) and 4.0 Gbytes of test data in 30 minutes, or about 2
minutes per day of simulation time.

Memory usage is negligible. The model consists of 33
fields with a vector of H = 1000 bits each, or about 4
Kbytes.

6

5. Clustering Field Values

In section 4, we used a hash function to reduce the model
size to conserve memory, and more importantly, to avoid
overfitting the training data. We got good performance
because the important fields for intrusion detection have a
small r, so that hash collision are rare for these fields.
However, hashing is a poor way to generalize continuous
values such as TTL or IP packet length when the training
data is not complete. A better representation would be a
set of clusters, or continuous ranges. For instance, Instead
of listing all possible hashes of the IP packet length (0, 1,
2,..., 999 for r = 1000), we list a set of ranges, such as {28-
28, 60-1500, 65532-65535}.

We modified PHAD to store a list of clusters for each
field, with a maximum of C clusters. Whenever an
anomalous value is observed in training, r is incremented
and a new cluster containing only the observed value is
created, for instance, 28-28 if a value of 28 is observed.
Then if the number of clusters exceeds C, the two closest
clusters are merged. The distance between clusters is the
smallest difference between two cluster elements. In the
example above, the closest pair is 28-28 and 60-1500
(distance 32), so if C = 2, then these would be merged to
form a new cluster, 28-1500.

The choice of C is a tradeoff between overgeneralizing
(small C) and overfitting the training data (large C). We
tried C = 32 and C = 1000, calling these models PHAD-
C32 and PHAD-C1000, respectively.

On the DARPA test set, C32 and C1000 both
outperform H1000. The results are summarized in table
5.1. The first two columns give the number of probe and
DoS detections. The last two columns give the number of
in-spec detections (exploiting the transport layer or below
according to our unofficial classification) and the total
number of detections at 10 FA/day.

Tables 5.2 and 5.3 list the unofficial detection rates for
PHAD-C32, the best performing system, for all probe and
DoS attacks out of the total number of instances of each
type of attack, at 10 FA/day. Out-of-spec attacks
(according to our unofficial classification) are shown in
parenthesis, with the application layer protocol that those
attacks exploit. Table 5.4 shows all R2L, U2R, and data
attacks. All of these except netbus are out-of-spec.

PHAD Probe/37 DoS/65 In-spec/78 All/201
H1000 29 (78%) 26 (40%) 53 (68%) 67 (33%)
C32 28 (76%) 31 (48%) 56 (72%) 72 (36%)
C1000 29 (78%) 28 (43%) 55 (71%) 70 (35%)

Table 5.1. Unofficial detection rates for PHAD at 10
FA/day

Probes Detected by PHAD-C32 Detected
illegalsniffer
ipsweep
ls (DNS)
mscan
ntinfoscan
portsweep
queso
resetscan
satan

2/2
4/7
(0/2)
1/1
2/3
14/15
3/4
0/1
1/2

Total Probes 28/37 (77%)

Table 5.2. Probes unofficially detected by PHAD-C32.
Protocols shown in parenthesis denote the application
layer that is exploited in out-of-spec attacks.

DoS Attacks Detected by PHAD-C32 Detected
apache2 (HTTP)
arppoison
back (HTTP)
crashiis (HTTP)
dosnuke
land
mailbomb (SMTP)
neptune
pod
processtable
selfping (UNIX shell)
smurf
syslogd
tcpreset
teardrop
udpstorm
warezclient (FTP)
warezmaster (FTP)

(1/3)
0/5
(0/4)
(1/8)
4/4
0/2
(2/4)
3/4
4/4
1/4
(0/3)
5/5
3/4
0/3
3/3
2/2
(0/3)
(1/1)

Total DoS 31/65 (48%)

Table 5.3. DoS attacks unofficially detected by PHAD-
C32. Parenthesis denote out-of-spec attacks.

Other Attacks Detected by PHAD-C32 Detected
R2L dict (FTP, telnet, POP3)
R2L named (DNS)
R2L netbus
R2L netcat (DNS)
R2L ppmacro (Powerpoint)
R2L sendmail (SMTP)
R2L xlock (X)
U2R casesen (NT shell)
U2R sechole (NT shell)

(3/7)
(1/3)
3/3
(1/4)
(1/1)
(1/2)
(1/3)
(1/3)
(1/3)

Total R2L, U2R and Data 13/99 (13%)

Table 5.4. Other attacks unofficially detected by
PHAD-C32. All R2L, U2R, and data attacks except
netbus are out-of-spec.

7

Lippmann (1999, Table 4) lists 21 hard to detect attacks
including 5 probes and 5 DoS. These are attacks for which
no system in the original evaluation detected more than
half of the instances. Table 5.5 shows that we improve on
four of these unofficially. We did not improve on any out-
of-spec attacks.

Probe/DoS Hard to
Detect Attack

Best detection
(Lippmann 1999)

PHAD-C32
(unofficial)

stealthy ipsweep 0/3 1
ls 1/2 (0)
stealthy portsweep 3/11 11
queso 0/4 3
resetscan 0/1 0
arppoison 1/5 0
dosnuke 2/4 4
selfping 0/3 (0)
tcpreset 1/3 0
warezclient 0/3 (0)

Table 5.5. PHAD-C32 unofficial detections of hard to
detect probes and DoS attacks. (Parenthesis denote
out-of-spec attacks).

An attack is classified as stealthy if the attacker takes steps
to hide it from the IDS. In the case of probes (ipsweep and
portsweep), this means slowing down the attack to more
than one minute between packets. PHAD is immune to this
technique because spreading out the attack actually
increases the anomaly score due to the factor t, the time
between anomalies.

The inside tcpdump data for week 4 day 2 is missing,
but we did not adjust our scores for that. The only in-spec
attack in this data is one instance of land, and we missed
the other one.

We did not determine how the out-of-spec attacks were
detected. We believe that some of these may be
coincidental, especially for attacks with long durations.
Some could also be due to simulation artifacts caused by
generating the attack in a different environment than the
one used to simulate the background traffic.

5.1. Run Time Performance

Clustering has a higher run time complexity than hashing.
By storing a sorted list of clusters, lookup time is O(log C)
by binary search. Worst case complexity is O(C), the time
to find the closest pair to merge when an anomaly is
detected in training, but this occurs only rarely. In
practice, our implementations of C32 and C1000 run at the
same speed as H1000.

Memory requirements are minor. The C1000 model
requires a list of 2C = 2000 4-byte numbers for each of 33
fields, for a total of about 264 Kbytes.

Neither the H nor C variants of PHAD allocate memory
at run time, so they are immune to DoS attacks on the IDS
that try to exhaust memory. However the C variants have
different average and worst case run times, making them
vulnerable to CPU runtime attacks. This vulnerability
exists only during the training period.

6. Merging Detections

One of the goals of the DARPA evaluation is to improve
the overall detection rate by combining the results of
multiple systems that detect different classes of attacks.
This should improve overall coverage, but since we must
also combine the false alarms from different systems, it
does not necessarily mean that the detection rate will be
improved at a given false alarm rate.

To that end, we measured the detection rates for the 18
systems participating in the 1999 evaluation, using the raw
alarm data, both alone and in combination with the alarms
from our systems. To combine multiple systems, we took
equal numbers of the highest scoring alarms from each
system until a threshold of 100 false alarms (10 per day)
was reached. Recall that we broke ties by sorting the
alarms by the time since the previous alarm, with the
longest intervals first, and then we removed duplicates that
occurred within 60 seconds of a higher ranked alarm.
When combining systems, we merged after the time-ranked
sorting, but before removing duplicates, so that when two
IDSs reported the same attack, we were left with only one
alarm. For example, suppose we are given the two lists of
alarms in Table 6.1, and the simulation starts at time 0:00.

System A
ID Time Victim Score
1 1:00 pascal 0.7
2 1:03 pascal 0.6
3 1:09 pascal 0.5
4 1:16 hume 0.4
5 1:18 hume 0.3

System B
ID Time Victim Score
1 1:00 pascal 1.0
2 1:02 pascal 1.0
3 1:10 pascal 1.0
4 1:15 hume 0.5
5 1:16 hume 1.0

Table 6.1. Hypothetical output of two IDSs.

In System A, we choose the alarms in the order 1, 2, 3, 4,
5, because the scores takes precedence over everything
else. In system B, we choose the alarms in the order 5, 1,
3, 2, 4, because the time since the previous equally scored

8

alarm against the same victim in the first four cases is 1:16,
1:00, 0:08, and 0:02. To merge these systems, we take
alarms alternately from each system in the chosen order,
i.e. 1A, 5B, 2A, 1B, 3A, 3B, 4A, 2B, 5A, 4B. Then we
remove alarms 1B (duplicate of 1A) and 4A (duplicate of
5B).

We exhaustively evaluated all 219 - 1 = 524,287
combinations of the 18 original systems and PHAD-C32 to
find the set that detects the most attacks, whether in-spec or
not, using the unoff icial evaluation method just described.
The off icial evaluation excluded out-of-spec detections in
order not to penalize systems for missing attacks that they
were not designed to detect. Our goal now is not to
penalize the merged system for detecting attacks that it was
supposed to miss. The results are shown in Table 6.2.

System Detections/201
(unofficial)

PHAD-C32 72
Best combination without PHAD 123 (61%)
Best combination with PHAD 131 (65%)

Table 6.2. Unofficial detection rates, including out-of-
spec detections, at 10 FA/day for merged combinations
of 18 IDSs in the 1999 DARPA evaluation and PHAD-
C32.

The best combination without PHAD consists of 3 high
scoring systems from the original evaluation, unoff icially
detecting 123 of 201 attacks, or 61% including out-of-spec
attacks. The best combination with PHAD-C32 includes
two of these three plus two others, for a total of 5 systems.
It unofficially detects 131 attacks, or 65%.

We should mention that our unoff icial rescoring of the
participant data found a significant number of out-of-spec
detections in many systems that were not counted in the
off icial results. The highest number unoff icially detected
by any system was 97.

7. Attacks in the Training Data

A practical problem in implementing any anomaly
detection system is how to keep the attack-free model up to
date as new hardware and software is added, possibly
changing the traff ic statistics. We could put the IDS back
into training mode periodically, but if any attacks occur
during this time, they would be missed. Not only that, but
the anomalies that they generated would be part of the
model, so that similar attacks would be missed later.

One approach to this problem might be to divide the
training set into smaller pieces, say, one day, and merge
multiple detectors each trained on a different piece. If an
attack occurs during some of the training days, then the
other detectors should still catch it. We could keep the

model updated by rotating components, say, by having 7
components each trained on a different day of the week,
and using 6 for detection while the seventh is being trained.

However, we found experimentally that this method
would not work. First, we divided the 7 day training
period (week 3, days 1-7) into one-day sets to train 7
PHAD-C32 models. These unoff icially detect 62, 57, 59,
56, 59, 71, and 39 of 201 attacks during weeks 4 and 5, or
an average of 61.9. But when we merge the sorted results,
we unoff icially detect only 31 attacks, compared to 72
when a single model was trained on all 7 days at one. We
also tried merging pairs of models, and the results were
almost always worse then the two components. The reason
may be that we are generating more false alarms without
detecting more attacks.

Next, we tested the effect of using training data with
attacks in it. As long as the attacks are of a different type
than those in the training data, then we should be able to
detect them. An important question is, if there are m
attacks in the training data, then how many attacks will we
miss in the test data?

We tested PHAD-C32 on the 10 attack days using only
the previous day's traff ic as training. That means that for
all but the first day, the training data would contain attacks.
The first day (week 4 day 1) was trained on week 3 day 7.
Since the DARPA test set contains 20 attacks per day
drawn from 64 types, we would expect that any given
attack in the test data has a (9/10)(20/64) = 28% chance of
having occurred during the training period. Thus, if there
is no generalization between attacks, then we should detect
28% fewer attacks than the average of 62 when using one
day of attack-free training data. We actually observed 36
attacks by this method, or 42% less, suggesting that there is
some generalization between the anomalies generated by
different types of attacks. More specifically, each attack in
the training data reduces by 42/28 = 1.5 the number of
attack types that can be detected.

8. Concluding Remarks

PHAD differs from most network IDSs and firewalls in
that it lacks semantic knowledge of the protocols that it
analyzes (other than checksums). PHAD uses only
syntactic knowledge to parse the header into fields, and
then figures out which fields are important. Surprisingly,
IP addresses and ports are not among them (they have large
r values). PHAD's lack of semantic knowledge is not a
disadvantage. For instance, its inabilit y to reassemble IP
fragments leads to the inadvertent detection of some
attacks that deliberately fragment the TCP header to try to
hide themselves. The IDS is an inviting target, so the
simplicity of the algorithm should make it easier to analyze
implementations for vulnerabilities.

9

We hypothesized that attacks generate anomalies
because they are necessary to exploit bugs (possibly bugs
in the IDS), or because of carelessness or lack of
knowledge by the attacker. We found examples of these,
and also anomalies generated by victims after the attack
succeeds. All but this last type are fundamentally different
from the types of anomalies studied by Forrest. Anomalies
in system calls are due to the program under attack
executing code either supplied by the attacker (as in a
buffer overflow) or code which was never properly tested.
In a network IDS, we look for untested inputs rather than
untested states.

We avoid direct comparison of PHAD to the original
participants in the DARPA evaluation because we had the
advantage of having access to the test data during
development. Although this data is not used to train the
system, having it available does introduce a bias because it
could influence our design and experimental protocol.
Nevertheless, we believe that our system is generic enough
that it would have ranked high if we had participated in the
original evaluation. We unoff icially detect 77% of probes,
and 48% of DoS attacks, and 72% of attacks that exploit
the protocols we analyze.

Since we detect four attack types that were missed by
all other systems (ipsweep, portsweep, queso, dosnuke), we
would expect that merging our system with the others
would result in an increase in total coverage. Indeed, that
is what we found. Merging PHAD with the 18 original
systems increases the total coverage from 61% to 65% of
all attacks according to our evaluation. Merging does not
always help. We also found that a weak system can
sometimes drag down a stronger one, and that merging
identical systems trained on different sets does not work.

In a practical system, it is diff icult to obtain attack-free
training data reliably. We investigated the effects of
including attacks in the training data, and estimate that
each attack makes the system vulnerable to about 1.5 attack
types. We also investigated shortening the training period
from 7 days to 1 day to reduce the number of training
attacks, and saw only a small average drop in the detection
rate, from 72 to 62 for PHAD-C32.

We are concerned that the test data is not a realistic
simulation. For instance, there are no checksum errors in
the training data, and other fields such as TTL have
unusually small sets of values. Floyd and Paxson (2001)
discuss many of the problems of simulating the Internet.
Tests in real systems are necessary, of course, but these
have the disadvantage that the tests cannot be replicated.
The DARPA IDS evaluation is not perfect, but it is a
valuable resource for the systematic study of IDSs.

We had experimented with a number of variations of
PHAD, none of which worked as well at the two variations
described here. In one experiment, we compared the
distribution of field values in the training and test data over
a time window. This detected some high volume attacks

that the other systems missed, but overall had lower
performance. Another variation looked at anomalies
across pairs of fields, but this had a slightly lower detection
rate than H1000 and was much slower.

Many R2L attacks and some DoS attacks exploit faulty
implementations of application layer protocols such as
HTTP or SMTP. We plan to apply the principles of
PHAD to detect anomalies in these protocols. Our
approach will be the same; apply some minimal syntactic
knowledge and let the system learn the rest of the protocols
from the training data.

Acknowledgments

This research is partially supported by DARPA
(F30602-00-1-0603). We wish to thank Richard Lippmann
for help by reviewing earlier drafts of this paper.

References

Bell, Timothy, Ian H. Witten, John G. Cleary, "Modeling
for Text Compression", ACM Computing Surveys (21)4,
pp. 557-591, Dec. 1989.

Barbará, D., N. Wu, S. Jajodia, "Detecting novel network
intrusions using Bayes estimators", George Mason
University, to appear.

Crosbie, Mark, and Price, Katherine, "Intrusion Detection
Systems", COAST Laboratory, Purdue University, 2000,
http://www.cerias.purdue.edu/coast/
intrusion-detection/ids.html

Floyd, S. and V. Paxson, "Difficulties in Simulating the
Internet." To appear in IEEE/ACM Transactions on
Networking, 2001. http://www.aciri.org/vern/papers.html

Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, "A sense of self for Unix processes",
Proceedings of 1996 IEEE Symposium on Computer
Security and Privacy. ftp://ftp.cs.unm.edu/pub/forrest/ieee-
sp-96-unix.pdf

Ghosh, A.K., A. Schwartzbard, M. Schatz, "Learning
Program Behavior Profiles for Intrusion Detection",
Proceedings of the 1st USENIX Workshop on Intrusion
Detection and Network Monitoring, April 9-12, 1999,
Santa Clara, CA.
http://www.cigital.com/~anup/usenix_id99.pdf

Horizon, "Defeating Sniffers and Intrusion Detection
Systems", Phrack 54(10), 1998, http://www.phrack.com

10

Kendall, Kristopher, "A Database of Computer Attacks for
the Evaluation of Intrusion Detection Systems", Masters
Thesis, MIT, 1999.

Lindqvist, U., and P. Porras, "Detecting Computer and
Network Production-Based Expert System Toolset (P-
BEST)", Proc. 1999 IEEE Symposium on Security and
Privacy, Oakland CA.
http://www.sdl.sri.com/emerald/pbest-sp99-cr.pdf

Lippmann, R., et al., "The 1999 DARPA Off-Line
Intrusion Detection Evaluation", Computer Networks 34(4)
579-595, 2000.

Neumann, P., and P. Porras, "Experience with EMERALD
to DATE", Proceedings 1st USENIX Workshop on
Intrusion Detection and Network Monitoring, Santa Clara,
California, April 1999, 73-80, Website:
http://www.sdl.sri.com/emerald/index.html
Paper: http://www.csl.sri.com/neumann/det99.html

Paxson, Vern, "Bro: A System for Detecting Network
Intruders in Real-Time", Proceedings, 7'th USENIX
Security Symposium, Jan. 26-29, 1998, San Antonio TX.
http://www.usenix.org/publications/library/proceedings
/sec98/paxson.html

Porras, P., and A. Valdes, "Live Traffic Analysis of
TCP/IP Gateways", Networks and Distributed Systems
Security Symposium, 1998.
http://www.sdl.sri.com/emerald/live-traffic.html

Sekar, R., and P Uppuluri, Synthesizing Fast Intrusion
Prevention/Detection Systems from High-Level
Specifications, Proceedings 8th Usenix Security
Symposium, Washington DC, Aug. 1999.

Tyson, M., P. Berry, N. Williams, D. Moran, D. Blei,
"DERBI: Diagnosis, Explanation and Recovery from
computer Break-Ins", 2000, http://www.ai.sri.com/~derbi/

Valdes, Alfonso, and Keith Skinner, "Adaptive, Model-
based Monitoring for Cyber Attack Detection", SRI
International, http://www.sdl.sri.com/emerald/adaptbn-
paper/adaptbn.html

Vigna, G., S. T. Eckmann, and R. A. Kemmerer, "The
STAT Tool Suite", Proceedings of the 2000 DARPA
Information Survivability Conference and Exposition
(DISCEX), IEEE Press, Jan. 2000, 46-55.

Vigna., G., and R. Kemmerer, "NetSTAT: A Network-
based Intrusion Detection System", Journal of Computer
Security, 7(1), IOS Press, 1999.
http://citeseer.nj.nec.com/vigna99netstat.html

