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Abstract 

 We introduce an algorithm called LERAD that learns 
rules for finding rare events in nominal time-series data 
with long range dependencies. We use LERAD to find 
anomalies in network packets and TCP sessions to detect 
novel intrusions.  We evaluated LERAD on the 1999 
DARPA/Lincoln Laboratory intrusion detection evaluation 
data set and on traffic collected in a university 
departmental server environment. 
 

1. Introduction and Related Work 

 An important component of computer security is 
intrusion detection--knowing whether a system has been 
compromised or if an attack is occurring.  Hostile activity 
can sometimes be inferred by examining inbound network 
traffic, operating system events, or changes to the file 
system, either for patterns signaling known attacks 
(signature detection), or for unusual events signaling 
possible novel attacks (anomaly detection).  Anomaly 
detection has the advantage that it can sometimes detect 
previously unknown attacks, but has the disadvantage that 
it issues false alarms, because unusual events are not 
always hostile.  Often both approaches are used.  For 
example, a virus detector might scan files for strings 
signaling known viruses, and might also test for 
modifications of executable files as indications of possible 
new viruses. 
 Network anomaly detection is a particularly difficult 
problem because higher level (application) protocols are 
complex and difficult to model, and because data must be 
processed at high speed.  A common approach is to use a 
firewall with rules programmed by a network 
administrator to block and/or log packets based on lower 
level features such as IP addresses and port numbers.  This 
technique can detect or block port scans and unauthorized 
access to private services (e.g. ssh) from untrusted clients.  
However, detection of attacks on public services such as 

HTTP (web), SMTP (email), and DNS (host name lookup) 
currently rely on signature detection systems such as 
SNORT [10] or Bro [8] to scan for strings signaling 
known attacks.  The rule set is quite large (SNORT has 
over 1800) and must be updated frequently.  This would 
not be an effective defense against novel attacks or fast 
spreading worms.  Network anomaly detection systems 
such as ADAM [2], SPADE [3], and eBayes [11], use 
machine learning approaches to model normal network 
traffic in order to identify unusual events as suspicious, 
but they model low-level (firewall-like) features such as 
addresses and port numbers, rather than application 
protocols. 
 We introduce an efficient, randomized algorithm called 
LERAD (Learning Rules for Anomaly Detection), which 
can discover relationships among attributes in order to 
model application protocols.  LERAD differs from 
association mining approaches such as APRIORI [1] in 
that it finds enough rules with a small set of allowed 
values in the consequent to describe the data, rather than 
all rules (allowing only one value) above a 
support/confidence threshold.  We believe this form is 
more appropriate for "bursty" (non-Poisson) time series 
data with long range dependencies, a characteristic of 
network traffic [4, 9]. 

2. Rule Learning Algorithm 

 LERAD learns conditional rules over nominal 
attributes in a time series (e.g. a sequence of inbound 
client packets or TCP sessions), in which the antecedent is 
a conjunction of equalities, and the consequent is a set of 
allowed values, e.g. if port = 80 and word3 = HTTP/1.0 
then word1 = GET or POST.  A value is allowed if it is 
observed in at least one training instance satisfying the 
antecedent.  If in testing a disallowed value is observed, 
then an anomaly score of tn/r is generated, where t is the 
time since the last anomaly by this rule, n is the support 
(number of training instances satisfying the antecedent), 
and r is the number of allowed values (2 in this example).  
The idea is to identify rare events: those which have not 



occurred for a long time (large t) and where the average 
rate of "anomalies" in training is low (small r/n).  If the 
total anomaly score summed over all violated rules 
exceeds a threshold, then an alarm is generated. 
 LERAD is a two pass algorithm.  In the first pass, a 
candidate rule set is generated from a random sample S of 
the training data (attack-free network traffic).  In the 
second pass, the rules are trained by collecting the set of 
allowed values for each antecedent.  After training the 
rules are validated on a portion of the training data (e.g. 
the last 10%) to remove "poor" rules where the training 
data is not representative of the test data (Fig. 1).  For 
example, the set of client IP addresses contacting a web 
server would be expected to grow steadily over time, so 
we would not wish to restrict the set to only those clients 
observed during a training period.  On the other hand, a set 
of local server addresses or ports would not be expected to 
grow after a short training period, so this would be a 
"good" rule. 
 

 
Figure 1.  Growth of r for "good" and "poor" rules 
 
 The LERAD rule algorithm is as follows: 
 
1. Rule generation.  Randomly sample L pairs of training 
instances from a random subset S of the training data, and 
generate up to M rules per pair that satisfy both instances 
with n/r = 2/1, generating rule set R. 
2. Coverage test.  Discard rules from R to find a minimal 
(but not optimal) subset of rules that cover all i nstance-
values in S, favoring rules with higher n/r over S. 
3. Training, pass 2.  Set the consequent of each rule in R 
to all values observed at least once in the training data 
when the antecedent is satisfied. 
4. Validation.  If a validation instance satisfies the 
antecedent but not the consequent of a rule (a violation), 
then remove the rule from R. 
5. Test.  For each instance, assign an anomaly score of    
Σ tn/r summed over the violations. 
 
 LERAD requires two passes over the training data, one 
to sample S uniformly prior to generating rule antecedents, 

and a second  pass to assign the consequents.  We cannot 
simply use the beginning of the training data for S because 
attribute values are not Poisson distributed, so S would not 
representative of the rest of the  training data. 
 In the rule generation step, we pick pairs of training 
samples and suggest rules based on the matching values.  
The algorithm is as follows: 
 
 Repeat L times 
  Randomly pick two instances S1 and S2 from S 
  Set A = { a: S1[a] = S2[a]} (matching attributes) 
  For m = 1 to M and A not empty do 
   Randomly remove a from A 
   If m = 1 then create rule ri = "a = S1[a]" 
   Else add S1[a] = a to ri's antecedent 
  Add ri to rule set R 
 
 For example, suppose that we randomly pick the first 
two instances of Table 1 as S1 and S2.  Then the set of 
matching attributes is A = { word1, port, word3} .  Suppose 
M = 4 and we randomly choose the attributes a in the 
order listed above.  Then we generate the following rules: 

• R1: word1 = GET 
• R2: if port = 80 then word1 = GET 
• R3: if port = 80 and word3 = HTTP/1.0 then 

word1 = GET 
 

Table 1.  Example training sample S 
 

Port Word1 Word2 Word3 
80 GET / HTTP/1.0 
80 GET /index.html HTTP/1.0 
25 HELO pascal  

 
 In the coverage test (step 2), we remove "redundant" 
rules, those which predict values in S already predicted by 
another rule with higher n/r over S (i.e. a rule which would 
probably generate higher anomaly scores in testing).  The 
procedure is as follows: 
 
 Update the consequents in R over S 
 Sort R by decreasing n/r 
 For each rule Ri in R in decreasing order of r/n 
  Mark the values predicted by Ri 
  If no new values can be marked, remove Ri 
 
 For example, consider the rules above.  After training 
over S and sorting by n/r these become: 
 

• R2: if port = 80 then word1 = GET  (n/r = 2/1) 
• R3: if port = 80 and word3 = HTTP/1.0 then 

word1 = GET  (n/r = 2/1) 
• R1: word1 = GET or HELO  (n/r = 3/2) 
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 (Note that the ordering of R2 and R3 is arbitrary, and R1 
has changed).  R2 marks the two GET values in S.  R3 
would mark the same two values and no new values, so we 
remove it.  R1 marks the HELO in the third instance, in 
addition to the previously marked values, so we retain this 
rule. 

3. Experimental Evaluation 

 Evaluation details are available from [7] and source 
code from [6].  To summarize, we tested LERAD using 
two attribute sets, one for IP packets and one for TCP 
connections.  For packets, the attributes were the first 24 
byte pairs (as 16-bit nominal values), beginning with the 
10 pairs of bytes from the IP header.  For TCP 
connections, the attributes were the source and destination 
port numbers, the individual bytes of the source and 
destination addresses, the connection length (in bytes), 
duration (in seconds), the TCP flags of the first and last 
two packets, and the first 8 words of the application 
payload (delimited by white space).  We used a sample 
size of |S| = 100 (20 to 500 work well) and drew L = 1000 
sample pairs, generating up to M = 4 candidate rules per 
pair, which are sufficient to generate 50 to 100 final rules 
for good results.  Using larger L and M do not add 
significantly more rules. 
 We tested LERAD using two data sets: the 1999 
DARPA/Lincoln Laboratory intrusion detection evaluation 
(IDEVAL) [5], and 623 hours of traffic collected from a 
university departmental server over 10 weeks in which we 
previously identified six attacks.  We examine only 
inbound client (unsolicited) traffic, rate limited to 16 
packets per connection per minute, and further truncated 
TCP connections after 256 bytes of the first payload 
packet.  This filtering removes 98-99% of traffic, greatly 
speeding up LERAD with minimal effect on detection 
accuracy. 
 For IDEVAL, we trained LERAD on 7 days of attack-
free traffic from inside sniffer week 3, and tested on 9 
days of traffic from weeks 4 and 5, which contains 
evidence of 146 simulated probes, denial of service, and 
remote to local (R2L) attacks against four "victim" 
machines running SunOS, Solaris, Linux, and Windows 
NT.  We evaluated LERAD according to the same criteria 
used in the 1999 blind evaluation, which requires only that 
we identify the target address and the attack time within 
60 seconds at a threshold allowing 100 false alarms (10 
per day).  We exclude U2R (user to root) attacks, as 
allowed by the evaluation criteria, because these attacks 
exploit operating system weaknesses rather than network 
protocols, and would be difficult to detect in network 
traffic. 
 The second test was on switched Ethernet traffic 
collected on a Sun Ultra-AX i2 running Solaris 5.9 as a 
file, web, and mail server.  We used SNORT and manual 

inspection to identify six attacks that eluded the university 
firewall: an inside port/security scan, three HTTP worms 
(Code Red II, Nimda, and Scalper), an HTTP proxy scan 
and a DNS version probe.   
 We used a stricter evaluation criteria: LERAD must 
identify at least one packet or TCP session involved in the 
attack.  We counted multiple instances of a worm probe 
from different sources as a single attack, since a detection 
is likely to lead to a rule being added to an accompanying 
signature detection system.  Lacking attack-free training 
data, we tested LERAD by dividing the traffic into 10 one-
week periods and tested each week after training on the 
previous week.  An attack in the training or validation data 
might mask a similar attack in the test data, but at least the 
first attack ought to be detected in the previous 
training/test pair.  We allowed 250 false alarms, or 10 per 
24 hours.  Results averaged over 5 runs with different 
random number seeds are shown in Table 2. 
 
Table 2.  Number and percent of attacks detected 

at 10 false alarms per day in IDEVAL and 
university traffic 

 
Data Packets TCP 
IDEVAL 48.2 (33%) 95.2 (64%) 
Univ. 1.4 (23%) 2.4 (40%) 

 
 LERAD using TCP attributes detects 64% of 146 
attacks in IDEVAL, compared to 40% to 55% detected by 
the top four (of 18) systems in the original blind 1999 
evaluation [5], even though most of those systems 
combined both signature and anomaly detection using both 
host and network  based attributes.  However, the 
comparison is biased in our favor because we had access 
to all of the test data during development.  In the 1999 
evaluation, participants were provided only with the first 
three weeks of data, containing a subset of the labeled 
attacks for development. 
 In IDEVAL we identified five categories of anomalies 
in the detected attacks. 

• User behavior anomalies, e.g. unusual destination 
ports as part of a port scan, or client IP address 
anomalies in a password guessing attack. 

• Anomalies due to exploitation of bugs in legal 
but seldom used (and therefore poorly tested) 
features of the protocol, for example, IP 
fragmentation in teardrop and land, which 
exploit bugs in IP reassembly code in a denial of 
service attack. 

• Anomalies due to the failure to reproduce the 
idiosyncrasies of normal clients, for example, 
omitting the opening SMTP HELO/EHLO 
handshake (which is not required) in the sendmail 
buffer overflow root shell exploit. 



• Anomalies deliberately introduced in an attempt 
to hide the attack signature at a higher protocol 
level, for example, scanning with FIN packets 
(with a missing ACK flag) to avoid having the 
probe logged by the server. 

• Anomalies from the victim after a successful 
attack, for example, interrupted TCP connections 
from a crashed host. 

 In the university traffic, all of the anomalies are due to 
idiosyncratic variations, mostly at the application layer, for 
example, generic values in the HTTP host field for Nimda, 
Scalper, and the proxy scan, and an unusual backslash in 
the port/security scan: GET / HTTP\1.0.  The one anomaly 
at the network layer was the unusual TCP segmentation in 
the Code Red HTTP command GET 
default.ida?NNNNN... in which GET appears in its own 
packet.  The actual buffer overflow exploit code was 
truncated during filtering. 
 Our implementations process 10,000 packets or 3500 
TCP sessions per second (after filtering) on a 750 MHz 
PC. The 8.9 GB of IDEVAL traffic was filtered in 7 
minutes and processed by LERAD in under two minutes. 

4. Concluding Remarks 

 LERAD differs from conventional network anomaly 
detection in that it models application protocols, allowing 
it to detect novel attacks on public servers.  Application 
protocols are complex, but LERAD is able to learn 
important relationships between attributes given only 
rudimentary syntactic knowledge (e.g. tokens are 
separated by white space).  It detects both simulated and 
real attacks, although there is a tradeoff between detection 
accuracy and a low false alarm rate.  The false alarm 
problem is fundamental to anomaly detection because 
unusual events are not necessarily hostile. 
 Many of the anomalies detected by LERAD are not due 
to hostile code, but rather to legal but unusual protocol 
implementations.  Unfortunately, this makes it difficult to 
understand the nature of the attack from the anomaly 
alone, or even to decide if an alarm should be dismissed as 
false.  We could identify no consistent differences between 
true and false alarms. 
 One may argue that many attacks could be trivially 
modified to elude detection.  Nevertheless, idiosyncratic 
anomalies are common in attacks in both of the data sets 
we used.  We argue that writing an attack to elude 
detection is difficult because an attacker would not be able 
to test it in the target environment prior to launching it. 
 Future work includes a single-pass version of LERAD, 
research into better tokenization techniques in order to 
parse binary protocols such as DNS, and testing on 
additional data sets. 
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