Modeling Multiple Time Seriesfor Anomaly Detection

Philip K. Chan and Matthew V. Mahoney
Department of Computer Sciences
Florida Institute of Technology
Melbourne, FL 32901

pkc,

Abstract

Our goal is to generate comprehensible and accurate
models from multiple time series for anomaly detection. The
models need to produce anomaly scores in an online man-
ner for real-life monitoring tasks. We introduce three algo-
rithms that work in a constructed feature space and evaluate
them with a real data set from the NASA shuttle program.
Our offline and online evaluations indicate that our algo-
rithms can be more accurate than two existing algorithms.

1. Introduction

Known failures can be modeled and detected, however,
unforeseen problems are not defined and hence are much
harder to detect. How do humans detect these novel fail-
ures? Usually, they rely on their experience on how the sys-
tem should behave and if deviations from normalcy arise,
they investigate the anomalies to determine if they are in-
deed problems. Similarly, we can endow computers with
the capability of detecting anomalies by modeling the nor-
mal behavior. Since algorithms do not usually generate the
perfect anomaly detector, the ability for humans to compre-
hend and edit the models for fine-tuning is essential. This
is particularly important for anomaly detection algorithms
because they usually have high false alarm rates.

In this paper we introduce three algorithms that can con-
struct comprehensible models from multiple training time
series that are representative of the normal behavior of a
system. Instead of storing all the training series, we gener-
alize the series into a concise model, which is then used for
anomaly detection. The resulting model is human compre-
hensible as well as efficient during detection. Rather than
working in the time domain inherent in the time series, we
construct features and work in a feature space. Model rep-
resentation is based on a sequence of axis-parallel “boxes”
in the feature space. The algorithms attempt to find boxes

nmahoney@s. fit. edu

that provide the most specific generalization of the train-
ing series. During monitoring, the models produce anomaly
scores in an online manner.

Our contributions include algorithms for modeling mul-
tiple time series, comprehensible models in a constructed
feature space, methodology for offline and online evalua-
tions, improved accuracy over existing methods based on
experiments using a real dataset from NASA.

Sec. 2 discusses related work. We describe our algo-
rithms in Sec. 3 and evaluate them in Sec. 4. Sec. 5 summa-
rizes our findings and suggest possible improvements.

2. Related Work

Some proven and broadly applicable techniques such as
WCAD [4] and neural networks suffer from opacity. It is
not at all clear from the state of a data compression pro-
gram or the trained weights of a neural network exactly
what has been learned. Also, WCAD [4] does not gener-
ate online anomaly scores. Our work is based on trajec-
tory modeling in feature space as described by Povinelli
et. al. [5]. Povinelli extracted d features of a time series,
which are simply time-lagged copies of the data delayed by
t,2t,3t,...dt, and d and ¢ are parameters. The density in
d-dimensional feature space is modeled by clustering the
training points and using a Gaussian mixture model to ap-
proximate the clusters. A test point is evaluated by its dis-
tance (in standard deviations) from the nearest cluster. The
model was shown to classify phonemes in speech, detect ar-
rhythmias in ECG traces, and detect mechanical failures in
a motor simulation. Generating a Gaussian mixture model
requires a slow, iterative process.

Vlachos et. al. [8] describe a Greedy-Split algorithm
that finds minimum bounding rectangles (MBR). It itera-
tively merges adjacent data points (or rectangles/boxes) in
the time series in a bottom-up manner until a user-specified
number of boxes (k) is reached. At each iteration, all po-
tential merges are considered and the merge that increases
the total volume the least is chosen to be performed. This

greedy algorithm runs in O(nlogn + k) time [8], where n
is the length of a time series, and might not yield an opti-
mal solution. However, a dynamic programming algorithm
that is optimal requires O(kn?) [3]. Vlachoes et al’s task is
to create a database index for efficient querying—given an
entire time series, finds the closest one in the database in an
offline manner. However, our task is to generate anomaly
scores in an online manner—for each data point in the time
series, generate a score for detecting novel anomalies.

In our earlier work on the NASA valve data [2], we used
the Gecko and RIPPER algorithms [7] to create a bounded
rectangle model. The Gecko clustering/segmentation algo-
rithm is more complex and less efficient than MBR in the
training phase, but our interest is in the correctness of the
model and efficiency in the testing phase. Gecko uses a 3-D
feature space: the original signal, and the first and second
derivatives, each of which is smoothed by a low-pass filter.
The time series is then segmented in feature space using a
hierarchical clustering algorithm. Next, RIPPER [1] is used
to generate a minimal rule set which separates the segments.
Each rule represents a “box” in the feature space. One seg-
ment can be defined by several boxes, and some boxes may
be open on some sides. Gecko, like MBR, satisfies our crite-
ria that the model be comprehensible. The boxes can either
be visualized in three dimensions, or expressed as a set of
if-then rules. During testing, a state machine is constructed
such that each state corresponds to one trajectory segment,
plus one error state. A transition to the next state occurs if
the number of consecutive points satisfying the rules for the
new state (falling within one of the boxes) exceeds a thresh-
old. An error occurs if the number of consecutive points
satisfying neither the current nor next state exceeds a sec-
ond threshold. Both thresholds are user-defined parameters.
Gecko has been extended to handle multiple training series.
First, the series are aligned by DTW. Next, the aligned se-
ries are averaged. Then the averaged series is segmented as
before. Finally, RIPPER is applied to separate the points in
the original series that align with different segments in the
merged series.

3. Approach

Our main goal is to generate a comprehensible model
that characterizes the behavior of multiple normal time se-
ries and accurately detects time series signifying unaccept-
able behavior as anomalies. The normal training time se-
ries are assumed to have similar general behavior, but they
may not be aligned—segments in two time series with cor-
responding behavior might not begin and end at the same
time in the time series. Also, given a test time series and
a model, anomaly scores are generated in an online man-
ner (applicable for real-life anomaly detection). The model
consists of axis-parallel constraints (“boxes”) in the feature

Greedy-Split(x, k)
for i =1 to n-1
x[1] = merge(x[i], x[i+1])
delete x[n]
while n > k
find 1 minimizing
vVdiff = V(i, i+1) - V(i) - V(i+l)
x[1] = merge(x[i], x[i+1])
delete x[i1+1]
return x

Figure 1. Greedy-Split Algorithm

space—each feature is constrained between a minimum and
a maximum value. We first discuss how a model is gener-
ated for one time series, then for multiple time series.

We use the Greedy-Split algorithm [8] to generate a
model for one time series. A sequence of n points in a
feature space is first approximated by a sequence of n — 1
boxes, each enclosing a pair of adjacent points. Then pairs
of adjacent boxes are merged by greedily selecting the pair
that minimizes the increase in volume after merging. That
is, Greedy-Split attempts to find a sequence of k boxes
with the least total volume and hence a model that is the
most specific generalization of the original sequence of data
points. The pseudocode for Greedy-Split algorithm that
models a sequence X of length n with k boxes is in Fig. 1.
In the Greedy-Split algorithm, mer ge(a, b) replaces
points or boxes @ and b with the smallest box that encloses
both, V(i) is the volume of X[i], and V(i, i+1) is
the volume of merge(x[i], x[i+1]). Vdiff isthe
increase in volume that would result from merging. Delet-
ing an element X[i] implicitly decrements n.

Greedy-Split can run in O(nlogn) time by storing the
boxes in a heap (priority queue) ordered by Vdi f f , the in-
crease in volume that would result from merging it with the
next box. In a heap, the elements are stored in a balanced
binary tree such that at each node the parent is smaller than
the two children. Each node X[i] also stores pointers to
X[i-1] and X[i +1] to form a doubly linked list. When
the box at the root of the heap is merged with its neighbor,
the two old boxes are removed from the heap, the merged
box is inserted, and Vdi f f of the two neighbors of the new
box are updated, requiring them to be sifted up or down the
heap. Each of the heap operations takes O(logn) time.

3.1 Box Modeling for Multiple Training Series

To generate a model for s time series, we first uses
Greedy-Split to find £ boxes in one time series and expand
the boxes to contain all of the remaining s — 1 training time
series, processing one series at a time. This is performed in
two passes for each time series. First, we label each point in
the time series with the box that is closest to it. In the second

boxExpand(x, y)
for j =1 ton
I[J] = i where x[i] is closest to y[j]
for j =1 ton
expand x[I[Jj]] to enclose y[i]
return x

Figure 2. Expanding box sequence x to en-
close time series y.

1. for each training series
use Greedy-Split with k1 boxes
2. for each box j in each training series
for each training series k I= i
label box j with nearest box in k
3. for each box in all series
merge with the labeled nearest boxes in
the other series
4. while there are more than k boxes

find the two closest boxes and merge them

Figure 3. Order-independent Box Modeling

pass we expand the boxes to enclose the points with match-
ing labels. We perform this step one time series at a time to
reduce the space complexity between passes from O(sk) to
O(k). Two passes are required because consecutive points
in a time series tend to be close together, which could re-
sult in a pathological model in which a single box grows in
small steps to enclose the entire data set. The pseudocode
of the algorithm is in Fig. 2. X is a sequence of k boxes
and y is a sequence of n points. Note that boxExpand is
called for each time series and the order of the time series
affects the resulting box model that covers all s series. That
“order-dependent” effect might not be desirable. Hence, we
explore an “order-independent” algorithm next.

3.2 Order-Independent Box Modeling

The main idea is to first approximate each time se-
ries by boxes and then select boxes that are closest to
merge/expand. During the merging, we ensure that each
merged box contains at least one box from each time se-
ries. That is, we bias the model such that each merged box
is generalized over all training series. The pseudocode is
illustrated in Fig. 3. Step 1 generates boxes for each indi-
vidual training series. Step 2, for each box in each series,
finds the closest box from each of the other series. “Clos-
est” means the least increase in volume that would result
from replacing a set of boxes with the merged box which
would enclose them. This distance can be negative if the
boxes overlap. For each box in each series, Step 3 merges
the boxes founded in Step 2. While the total number of
boxes exceeds k, Step 4 repeatedly merges the two closest
boxes. Steps 2 and 3 ensure that each resulting box covers

1. for each training series
use Greedy-Split with k1l boxes
2. while there are more than k boxes

find the two closest boxes and merge them

Figure 4. Order-independent Box Modeling
without the All-series Constraint

at least one data point in each series; Step 4 preserves this
characteristic. The dominating step is Step 2 or 3, which
is O(k13), where k1 is the initial number of boxes. The
algorithm also works without Step 1, but Step 2 or 3 will
become O(n?), where n is the length of a time series.

3.3 Order-Independent Modeling without the All-
series Constraint

The order-independent modeling algorithm in the pre-
vious section ensures all resulting boxes cover some data
points on every training series—we call this constraint (gen-
eralization bias) the “All-series” constraint. However, this
constraint might not be appropriate. Considering only one
feature and four boxes that represent the same behavioral
segment in four time series. The four boxes (or ranges in
one dimension/feature) are [0,2], [1,3], [10,12], and [11,13].
With the “All-series” constraint, one range, [0,13], will be
formed. Naturally, it might be more appropriate to have
two ranges: [0,3] and [11,13], which might not be possible
with the “all-series” constraint. To remove the constraint
and allow “parallel” boxes, we remove Steps 2 and 3 that
are for enforcing the constraint in Fig. 3. The pseudocode
for order-independent modeling without the All-series con-
straint is in Fig. 4. Allowing “parallel” boxes can reduce the
increase in total volume and hence generalization.

The two algorithms for order-independent box modeling
does not depend on the order of the training series, but the
original order of the boxes might not be preserved. Con-
sidering only two time series, Box a is before Box b (not
necessarily adjacent) in Series 1 and Box X is before Box y
in Series 2. If a is closer to y than X, a and y are merged
into Box ay. If b is closer to X than y, b and x are merged
into Box bx. If we want to maintain the ordering of a before
b and x before y, an ordering is not possible for ay and bx.
Hence, the merged boxes might not have a total ordering
consistent with the ordering prior to merging.

3.4. Anomaly Score during Testing

During testing each data point of a time series is assigned
an anomaly score in an online manner. If the boxes in a box
model has an ordering, we can use stateful or stateless test-
ing. Otherwise, only stateless testing may be performed.
The order-dependent algorithm provides an ordering of the

resulting boxes, but the two order-independent algorithms
may not provide an ordering. In stateful testing, we keep
track of which state/box we were in previously. If the cur-
rent data point fits the current or next state/box, the anomaly
score is zero. Otherwise, the anomaly score is the squared
distance to the surface of the current or next box, whichever
is closer. In stateless testing all boxes/states are compared.
If the data point is within a box, the anomaly score is zero.
Otherwise, the closest box is located and the squared dis-
tance to the box surface is the anomaly score. Formally,
given a point p at (z,y, z) in a 3-D space and a box b at
([mmina mmaw]v [ymin7 ymaz]7 [Zmin; Zmaa:])~ The center of
bis at (Z, 7, Z), where T = (Tmin + Tmaz)/2 and similarly
for § and Zz). To find the closest box, we calculate:

Distance(p,b) = \/(x —)2 + (y —)2 + (2 — 2)2.
(D
If point p is inside box b (Tin < T < Tppae and similarly
for y and z), AnomalyScore(p,b) is 0. Otherwise,

AnomalyScore(p,b) = (z—2)?+(y—19)*+(2—2)?, (2)

where (&, g, 2) is the point on the box surface that is closest
to p; & is defined as:

Tmin 1 T < Toin
T = Tmaz 1T > Tmaz
T otherwise

and y and 2 are similarly defined. For example, if the range
of the x coordinates for box b is [Zmin = 3, Tmaz = 5] and
ris7,zis 5;if xis 4, T is 4.

4. Experimental Evaluation

4.1. Experimental Data

The NASA valve data set [2] consists of solenoid cur-
rent measurements recorded on Marrotta series MPV-41
valves as they are remotely opened and closed in a labora-
tory. These small valves are used to actuate larger, hydraulic
valves that control the flow of fuel to the space shuttle en-
gines. Sensor readings were recorded using either a shunt
resistor or a Hall effect sensor under varying conditions of
voltage, temperature, or blockage or forced movement of
the poppet to simulate fault conditions. There are several
data subsets, of which two are suitable for testing anomaly
detection systems. These are the TEK and VT1 (voltage
test 1) sets. The TEK set contains 4 normal and 8 abnor-
mal time series. The four normal traces are labeled TEK
0 through TEK 3, and vary slightly in the degree of back-
ground noise, duration of the “on” cycle, and average cur-
rent during both the ”on” and off” portions. The abnormal
series (TEK 10 through 17) were generated by restricting or

Figure 5. Concatenation of TEK 0, 10, and 16.

forcing the movement of the poppet, which has the effect
of changing the shape of the rising and falling edges of the
waveform. All of the waveforms consist of 1000 samples at
a rate of 1 ms per sample. The trace begins at time -0.1s.
The valve is actuated at time 0, and deactivated at various
times, typically around time 0.2s to 0.3s. The ”on” current
is approximately 4 in unspecified units. The ”off” current is
approximately 0. Measurements are quantized with a res-
olution of 0.04. In our experiments we do not use TEK 4
through TEK 9 because these are partial waveforms with
different sampling rates.

Fig. 5 shows three typical series, TEK 0, 10, and 16.
TEK O is normal. The spikes on the rising and falling
edges of the waveform are due to induced voltage caused
by movement of the solenoid magnet during opening and
closing of the poppet. In TEK 10, the poppet is blocked, so
these spikes are absent. In TEK 16, the poppet is initially
blocked, then released during the middle of the “on” cycle,
causing a temporary dip in the current. It lacks a spike on
the rising edge, but has a normal spike on the falling edge.

In addition to these differences, there are also differences
unrelated to valve failure. TEK 0, 1, and 15 have a 500 Hz
signal with amplitude 0.24 as a background signal, visible
in the first waveform as a double line. TEK 0 also has a
large 2 ms alternating current spike at the start of the falling
edge (invisible at this scale) that is absent in the other traces.

4.2. Experimental Procedures

We test each proposed anomaly detection algorithm on
the TEK and data sets. In each case we train the model on a
proper subset of the training data, assign anomaly scores to
all of the traces.

e Euclidean Modeling (method “EU”)

e Gecko+RIPPER (method “GR”)

e Order-dependent Box modeling (method “OD”)

e Order-independent Box Modeling with the All-series
Constraint (method “OC”)

e Order-independent Box Modeling without the All-
series Constraint (method “OU”)

4.21 Euclidean (EV)

The Euclidean distance between time series A and B of
equal length can be defined as:

Euclidean(A, B) = \/Z(AMBM)?. 3)

Since Eucldiean distance is not defined between one (test)
time series and a set of (training) time series, we use a near-
est neighbor method to compute an anomaly score for each
point on the test series. That is, the anomaly score of a test
point is the distance to the closest train point with the same
index (¢). That is, all the training points are stored and no
generalization occurs during training. Since Euclidean in-
herently does not perform alignment, we perform a simple
alignment before calculating the Euclidean distance. Given
a test series, we shift each entire training series left or right
so that the rising edges are aligned (“‘extra” data points are
“wrapped around”). We also generate another training se-
ries so that the falling edges are aligned. That is, each train-
ing series generates two shifted series with two different
alignments and the number of training series is doubled.
To save computation, we use the square of the Euclidean
distance as the anomaly score.

422 Gecko+RIPPER (GR)

We tuned the Gecko parameters to produce the best results
we could find on the TEK data set: a consecutive error
threshold of 5, a consecutive next state threshold of 1, a
smoothing window of size 2, and a derivative window of
size 11 (5 before and 5 after). Gecko is designed to give a
pass/fail result. The test data determines the transitions in a
sequential state machine, which either goes to an accepting
state or an error state. However, the current version will also
produce an anomaly score using an algorithm which we out-
line here (see [7] for details). The modification is to run as
a ’nondeterministic” state machine, in which the state is the
set of segments for which the test point satisfies the rules.
When a point fails to satisfy the rules of either the current or
next segment, that segment is removed from the set. When
the set is empty, Gecko goes into a recovery mode in which
it tests segments in an exponentially growing window start-
ing at the last known matching segment. Gecko outputs an
anomaly score as a time series which increases by 1 at each
step when the set is empty and decreases by 1/3 otherwise.
The final score is the sum of these outputs.

423 Box Modeling (OD, OC, OU)

We used the same feature set for path and box model-
ing. For features, we used the smoothed signal, and the

Figure 6. Tek 0, 1, and 3 in our feature space.

smoothed first and second differences to create a 3-D fea-
ture space. We chose the first and second differences be-
cause they are intuitive (each test point should match the
level, slope, and curvature of a training point), but it is
actually the time lag in the smoothing filters that makes
the model work. The smoothing is also necessary because
the valve data is quite noisy. We selected the filters based
largely on visual inspection of the output, and found that
additional filtering is needed after each difference opera-
tion. Specifically, we built the filters from two primitive
elements, a two tap low pass infinite impulse response fil-
ter, F', and a two tap finite impulse response difference filter,
D. F is defined:

(T — 1)F(1‘Z‘,1) + x;
T b)

F(z;) =

where T’ is the filter time constant and z; is the input at time
i. F'(xg) is initialized to 0. D is defined:

D(xz) =T; — Tj—1
The three features are:

e current = F(F(x))
e d_current = F(F(D(current)))
e d2_current = F(F(D(d-current)))

Fig. 6 shows TEK 0, 1, and 3 in this feature space: current,
d_current, and d2_current. Note that time is not a feature.

To make a distance measure meaningful, each of the fea-
tures should play a role. In this experiment, we scale the
three features to fit a unit cube, so that the training data al-
ways ranges from O to 1. Other approaches are certainly
possible, such as normalizing to unit standard deviation, or
specifying the scaling as parameters. Smoothing allows the
output to be subsampled at the rate 1/T to speed process-
ing with little loss of information. We do this for all of our
experiments.

42 Current

Figure 9. TEK10 tested with the OU model

Current

OD: Order-dependent
L A
OC: Order-independent

OU: Order-independent without All-series Constraint

Figure 10. Anomaly scores for TEK 2 and 10

Figures 7, 8, and 9 show the resulting box models using
Methods OD, OC, and OU (Sec. 4.2) and TEK 0O, 1, and 3
as training series (Fig. 6) with K=20 boxes. Note that the
training series diverse quite a bit in the lower right corner
of Fig. 6. As we expect, the OC model (with the All-series
constraint) in Fig. 8 has one box in the lower right corner
while the OU model (without the All-series constraint) in
Fig. 9 has multiple boxes. An abnormal series TEK 10 is
shown with the box models to illustrate its deviation from
the learned box models.

In Fig. 10 we show the anomaly scores of TEK 2, which
is normal, and TEK 10, which is abnormal. As we ob-
serve from the figures, TEK 2 has zero/low anomaly scores,
while TEK 10 has high anomaly scores near the rising and
falling edges of the time series. For our experiments, we
use stateless testing (Sec. 3.4), time delay T=5, initial boxes
K1=200, and resulting boxes K=20. These parameters were
selected based on some initial experiments.

4.3. Offline Evaluation

We first evaluate the total anomaly score for an entire test
time series in an offline manner (assuming the entire time
series is available before testing starts and prediction occurs
after the entire time series has been processed). Each time
series is labeled either normal or abnormal. By adjusting the
threshold on the total anomaly scores, different detection
and false alarms rates can be obtained. We choose a thresh-
old that yields no false alarms. That is, the threshold is set
to be higher than the anomaly scores obtained from the nor-
mal series (including those that are not used in training). In
practice this is reasonable because normal traces are readily
available for tuning the threshold and unforeseen abnormal
series are not available. Table 1 shows the number of misses
(missed detections) from models with two and three train-
ing time series. The columns indicate which training series

Table 1. Number of Misses with No False Alarms with (a) 2 and (b) 3 Training Series

Methods | 0,1 [0,2 | 03 | 1,2 | 1,3 | 2,3 | Avg Methods | 0,1,2 | 0,1,3 | 0,2,3 | 1,2,3 | Avg
EU 6 6 1 5 3 31 40 EU 6 1 1 31275
GR 1 0 0 0 8 8| 28 GR 0 0 0 11025
OD 0 0 0 0 0 0 0 OD 0 0 0 0 0
oC 0 0 0 0 0 0 0 oC 0 0 0 0 0
ou 0 0 0 0 0 0 0 ou 0 0 0 0 0

were used. For example, column “0,1” means TEK 0 and
1 are the training series, and “0,1,2” means TEK 0, 1 and 2
are the train series. The “Avg” column is the average of the
different training combinations. The same column format is
used for tables in subsequent sections.

We observe that box modeling (OD, OC, and OU) have
no missed detections, while EU has the most. Both EU and
GR benefit from more training data. Different combina-
tions of training series can yield vastly different results. For
example, GR has no misses with three of the four combina-
tions of three series, but it missed all 8 abnormal series with
two of the six combinations of two series.

4.4, Online Evaluation with ROC

In practice, data points in a time series stream in an on-
line manner and the operator needs to identify problems at
the earliest. Hence, instead of evaluating the total anomaly
score of each test time series, we would like to evaluate the
individual score for each data point. Given the segments
that are labeled abnormal (instead of the entire time series),
we use a score threshold and check if the anomaly score
of each test data point can predict the abnormal segments
correctly. For this evaluation, we choose to use the area un-
der the ROC (Receiver Operating Characteristics) curve [6]
as the measure. The area corresponds to the likelihood of
detection with any threshold. For each model, we evaluate
anomaly scores for all 4 normal TEK and 8 abnormal time
series. Table 2 shows the area under the ROC obtained from
models with two and three training time series.

We observe that GR and EU achieved a larger area than
the box modeling methods. Among the box modeling meth-
ods, OD (order-dependent) yielded larger area than OC and
OU (order-independent). Again, GR benefited from using
more training data. While GR and EU are more accurate
than box modeling according to the online ROC area evalu-
ation, they are less accurate according to the offline number
of detections (Table 1). Since the area under the ROC curve
consider all thresholds, all false alarm rates are equally im-
portant. Though this evaluation is useful for an arbitrary
threshold (false-alarm rate), it might be less applicable to
monitoring tasks that try to detect problems.

4.5. Online Evaluation with ROC up to 1% False
Alarm Rate

If the false alarm rate is high, the human operator who
monitors the device might ignore the alarms, which could
render the detection system useless. Also, anomaly detec-
tion is prone to high false alarm rates. Hence, we would
like to evaluate the performance of the methods at low false
alarm rates and measure the area under the ROC curve up
to 1% false alarm rate (instead of up to 100% false alarm
rate—the entire ROC curve). That is, we measure the per-
formance of the methods with any threshold that causes at
most 1% false alarms. Table 3 shows the area under the
ROC up to 1% false alarm rate obtained from models with
two and three training time series.

From Table 3a, we observe that box modeling (OD, OC,
OU) is more accurate than GR and EU. GR, again, bene-
fited from more training series and yielded higher accuracy
with three training series instead of two. With three training
series (Table 3b) GR’s accuracy is similar to box modeling,
however the area for GR varies quite a bit (larger variance).
The low accuracy for “1,2,3” coincides with the only missed
detection observed for GR in Table 1b.

With two training series in Table 3a, box modeling out-
performed GR and EU, but the converse is true if the area
under the entire ROC curve is considered (Table 2a). This
implies that, EU and GR are less accurate below 1% false
alarm rate, but more accurate at higher false alarm rates.
Box modeling (OD, OC, OU) continues to be insensitive to
the amount of training data. This implies that fewer train-
ing series are needed and training time could be shorter to
achieve similar top accuracy in this study.

5. Concluding Remarks

We introduced three box modeling algorithms that can
produce comprehensible models from multiple training
time series. The resulting box models can be visualized and
edited (software that can rotate and edit the box models in 3-
D is not described here). Our first algorithm generates boxes
using the Greedy-Split algorithm and then expands them to
cover points on the other time series, one at a time. Since
the ordering of the training series affects the resulting box

Table 2. ROC Area with (a) 2 and (b) 3 Training Series

Methods | 0,1 | 0,2 | 0,3 | 1,2 | 1,3 | 2,3 | Avg Methods | 0,1,2 | 0,1,3 | 0,2,3 | 1,2,3 | Avg
EU 77| 84| .85 | 85| .88 | .85 | .84 EU .85 .86 .86 .88 | .86
GR 70 | 90 | 90 | .87 | .83 | .86 | .84 GR .92 .92 91 91| 92
OD 68 |72 72 72 72 T2 T OD 72 72 72 g3 72
oC .64 | .66 | .62 | .66 | .66 | .68 | .65 oC .67 .66 .67 .67 | .67
ou .64 | .67 | .61 | .66 | .66 | .68 | .65 ou .67 .66 .67 .67 | .67
Table 3. ROC Area (x10~2) upto 1% FA with (a) 2 and (b) 3 Training Series
Methods | 0,1 | 0,2 | 0,3 | 1,2 | 1,3 | 2,3 | Avg Methods | 0,1,2 | 0,1,3 | 0,2,3 | 1,2,3 | Avg
EU .01].01|.07].03]|.06|.05]| .04 EU .01 .07 .07 .06 | .05
GR .03 .17 | .18 | .05 | .00 | .00 | .07 GR .18 20 15 05| .15
OD 09 |13 | 13| 15| 15| .13 | .13 OD 13 13 13 A5 | .14
ocC 09 | 13| 14| 13| 14| 15| .13 ocC 13 13 12 d4 1 13
ou 09 |14 | 13| 14| 15| 15| .13 ou 14 14 13 d4 | 14

model, we introduce an order-independent algorithm. The
second algorithm generates boxes on each training series
and then merges the boxes with the constraint that each re-
sulting box contains at least one data point on each training
series. However, this “all-series” constraint might merge
boxes that are too distant so we remove the constraint in our
third algorithm and allow less increase in total volume of
the resulting box model.

We used the NASA valve data set to compare
our box modeling algorithms with Euclidean (EU) and
Gecko+Ripper (GR). Our empirical results indicate that our
box modeling algorithms have fewer missed detections than
GR or EU in an offline evaluation. For online evaluation,
our results indicate that box modeling is more accurate than
GR or EU at low false rates (< 1%) with two training series
and are similar to GR with three training series. Further-
more, the accuracy of box modeling at low false alarm rates
with two training series is comparable to the accuracy of
GR with three training series.

In the (training) order-independent algorithms proximity
among boxes is the main criterion for merging them. How-
ever, the original temporal ordering of the boxes in each
of the training series is not considered. If we consider the
original temporal ordering, we can ignore possible merges
that violate the ordering and hence speed up training. Also,
boxes in our models are axis-parallel, we can allow more
flexible non-axis-parallel boxes with the price of increase
complexity. One caveat with online evaluation is the diffi-
culty of labeling the abnormal time series. Do we only label
segments that indicate the beginning of abnormal behavior,
or do we also label subsequent segments as well and how
long these subsequent segments last? We currently use bi-
nary (normal/abnormal) labeling, but multi-valued labeling
can be explored for different kinds of abnormal segments.

Acknowledgments This work is partially supported by
NASA (NAS10-02044). Bob Ferrell and Steve Santuro at
NASA provided the valve data set. Walter Schefele at ICS
developed the visualization software used in this project and
provided screen shots for this paper. Chris Tanner at Florida
Tech. provided test results for Gecko+RIPPER. We thank
the anonymous reviewers for their comments.

References

[1] W. Cohen. Fast effective rule induction. In Proc. 12th Intl.
Conf. Machine Learning, pages 115-123, 1995.

[2] B. Ferrell and S. Santuro. Nasa shuttle valve data.
http://www.cs.fit.edu/"pkc/nasa/data/, 2005.

[3] M. Hadjieleftheriou, G. Kollios, V. Tsotras, and D. Gunop-
ulos. Efficient indexing of spatiotemporal objects. In Proc.
EDBT, pages 251-268, 2002.

[4] E. Keogh, S. Lonardi, and C. Ratanamahatana. Towards
parameter-free data mining. In Proc. ACM S GKDD, pages
206-215, 2004.

[5] R. Povinelli, M. Johnson, A. Lindgren, and J. Ye. Time series
classification using gaussian mixture models of reconstructed
phase spaces. |EEE Trans. Knowledge and Data Engineering,
16(6):779-783, 2004.

[6] F. Provostand T. Fawcett. Analysis and visualization of clas-
sifier performance: Comparison under imprecise class and
cost distributions. In Proc. 3rd Intl. Conf. Knowledge Dis-
covery and Data Mining, pages 43-48, 1997.

[7] S. Salvador and P. Chan. Learning states and rules for detect-
ing anomalies in time series. Applied Intelligence, 2005. to
appear.

[8] M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and
E. Keogh. Indexing multi-dimensional time-series with sup-
port for multiple distance measures. In Proc. ACM SIGKDD,
pages 216-225, 2003.

