Fast Text Compression with
Neural Networks

Matthew Mahoney
Florida Institute of Technology

http://cs.fit.edu/~mmahoney/compression/

* How text compression works
» Neural implementations have been too slow
* How to make them faster

How Text Compression Works

Common character sequences can have shorter codes

Morse Code

e=.

Z=--.
Shorter code L onger code
e 4
dog dgo
of the the of
rosesarered roses are green

Text compression isan Al problem

Types of compression

From fast but poor ...
to slow but good

Limpel-Ziv (compress, zip, gzip, gif)

xnl

thecatinthehat — thecatin h

Context Sorting (Burrows-Wheeler (szip))

the cal|t ---> 2t la 2_ 2e (run-length code)
the halt
the c|a
in the| _
at the| _
in th|le
hat th|e

Predictive Arithmetic (PPMZ (boa, rkive) and neural
network)

P(a)
P(b)

x =theca Predictor Arithmetic
P(2) Encoder

t

P(x < the cat)

Arithmetic Encoding

0 1
A BICID|EIFIGIH K] LM | NJOPIQRIS| T[UVWX|Y]Z

.78 .83
TA Il TE | TH |TL TO || TR | TU|TW[TY
.79 .798 .803 81
THA Il THE [l THE il THO || THR | THU |

P("THE") = 0.005
Compress("THE") = .8

Binary code for x iswithin 1 bit of log, 1/P(X)
(Theoretical limit, Shannon, 1949)

Compression depends entirely on accuracy of P.

Schmidhuber and Heil (1994)
Neural Network Predictor

Next

characters Character

80 character alphabet

3 layer network

400 input units (last 5 characters)

430 hidden units

80 output units

Trained off linein 25 passes by back propagation
Training time: 3 days on 600K B of text (HP-700)
18% better compression than gzip -9

Fast Neural Networ k Predictor

m

IL|EJPIH|A|N|ox

22-bhit hash
function

Predicts one bit at atime

2 layer network

2% (about 4 million) input units

One output unit

Hash function selects 5 or 6 inputs = 1, al others 0
Trained on line using variable learning rate
Compresses 600K B in 15 seconds (475 MHz P6-11)
42-47% better compression than gzip -9

Prediction

P(1) = g(Zi wixi) Weighted sum of inputs

gx) =1/(1+¢€™) Sguashing function
Training

Ni(y) < Ni(y) + X Count O or 1 in context i

E=y-P(1) Output error

Wi — Wi+ (Ns+ NU/o%)XE Adjust weight to reduce error

0% = (Ni(0) + Ni(1) + 2d)/(N;(0) + d)(Ni(2) + d)
Variance of data in context i

d=05 Initial count
Ns=0t00.2 Short term learning rate

nL=02t00.5 Long term learning rate

Compression Results

-
2

compress

zip

gzip -9

szip b4l '°°#
boa 'mlsﬁ
rhive 'm”’m mBookl
OAlice

ps#
pe#

1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35

Compression in bits per character

Ns and N, tuned on Alice in Wonderland
Tested on bookl (Far from the Madding Crowd)

P5 - 256K neurons, contexts of 1-4 characters

P6 - 4M neurons, contexts of 1-5 characters

P12 - 4M neurons, contexts of 1-4 characters and 1-2
words (unpublished)

Compression Time

compress
zip
W Decompress
gzip -9 O Compress
szip -b41 -00

os 'mlsﬁ

rkive -mt3 4'

p5

p6
1 1 1 1 1 1 1
0 20 40 60 80 100 120 140

Seconds to compress and decompress Alice
(152K B file on 100 MHz 486)

Summary

Compression within 2% of best known, at similar speeds
50% better (but 4x-50x slower) than compress, zip, gzip

Fast because
» Fixed representation - only output layer istrained
(5x faster)
* One passtraining by variable learning rate (25x faster)
 Bit-level prediction (16x faster)
e Sparseinput activation (5-6 of 4 million, 80x faster)

|mplementation available at
http://cs.fit.edu/~mmahoney/compression/

