Fast Text Compression with Neural Networks

Matthew Mahoney Florida Institute of Technology

http://cs.fit.edu/~mmahoney/compression/

- How text compression works
- Neural implementations have been too slow
- How to make them faster

How Text Compression Works

Common character sequences can have shorter codes

Morse Code

e = .

z = --..

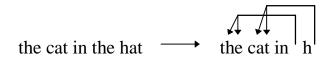
Shorter code	Longer code
e	\mathcal{Z}
dog	dgo
of the	the of
roses are red	roses are green

Text compression is an AI problem

Types of compression

From fast but poor... to slow but good

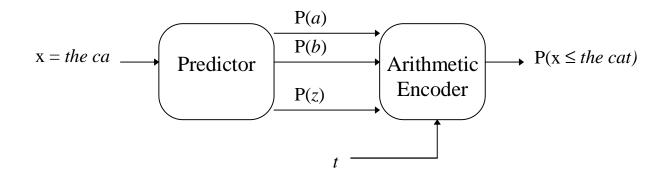
Limpel-Ziv (compress, zip, gzip, gif)



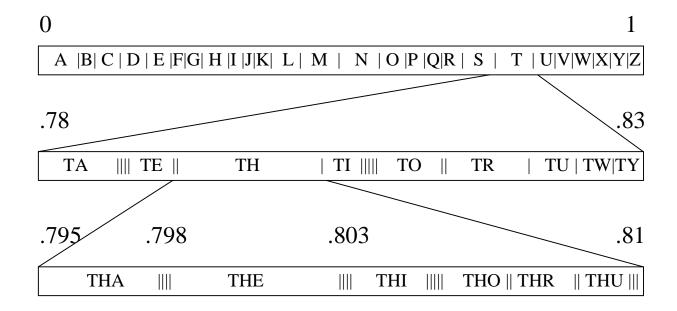
Context Sorting (Burrows-Wheeler (szip))

```
the ca t ---> 2t 1a 2_ 2e (run-length code)
the ha t
  the c a
in the |
  in th | e
hat th | e
```

Predictive Arithmetic (*PPMZ* (*boa*, *rkive*) and neural network)



Arithmetic Encoding



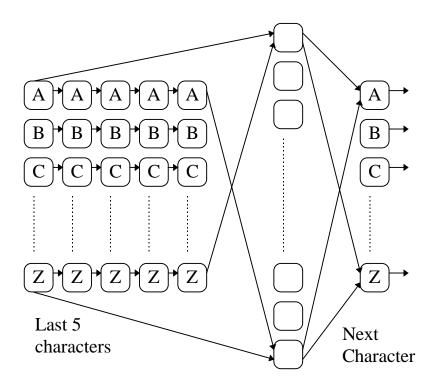
$$P("THE") = 0.005$$

Compress("THE") = .8

Binary code for x is within 1 bit of $log_2 1/P(x)$ (Theoretical limit, Shannon, 1949)

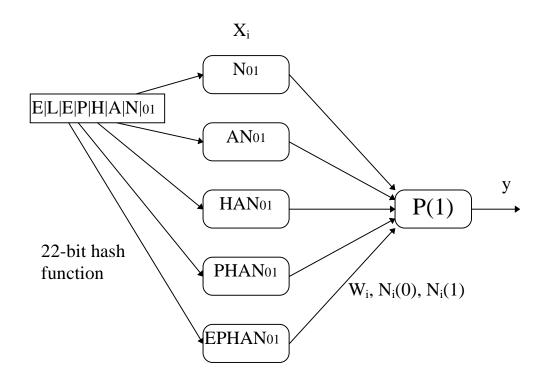
Compression depends entirely on accuracy of P.

Schmidhuber and Heil (1994) Neural Network Predictor



- 80 character alphabet
- 3 layer network
- 400 input units (last 5 characters)
- 430 hidden units
- 80 output units
- Trained off line in 25 passes by back propagation
- Training time: 3 days on 600KB of text (HP-700)
- 18% better compression than gzip -9

Fast Neural Network Predictor



- Predicts one bit at a time
- 2 layer network
- 2²² (about 4 million) input units
- One output unit
- Hash function selects 5 or 6 inputs = 1, all others 0
- Trained on line using variable learning rate
- Compresses 600KB in 15 seconds (475 MHz P6-II)
- 42-47% better compression than gzip -9

Prediction

$$P(1) = g(\Sigma_i w_i x_i)$$

Weighted sum of inputs

$$g(x) = 1/(1 + e^{-x})$$

Squashing function

Training

$$N_i(y) \leftarrow N_i(y) + x_i$$

Count 0 or 1 in context i

$$E = y - P(1)$$

Output error

$$w_i \leftarrow w_i + (\eta_S + \eta_L/\sigma^2_i)x_iE$$

 $w_i \leftarrow w_i + (\eta_S + \eta_L/\sigma_i^2)x_iE$ Adjust weight to reduce error

$$\sigma^2_i = (N_i(0) + N_i(1) + 2d)/(N_i(0) + d)(N_i(1) + d)$$

Variance of data in context i

$$d = 0.5$$

Initial count

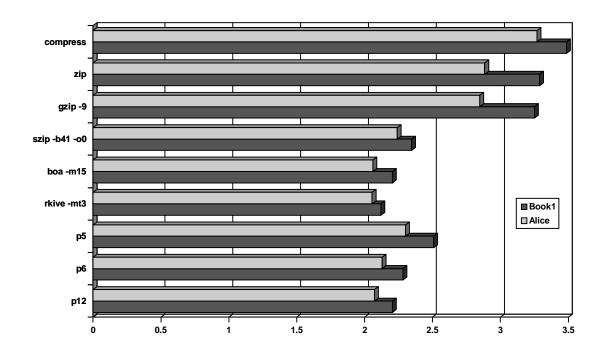
$$\eta_{\rm S} = 0 \text{ to } 0.2$$

Short term learning rate

$$\eta_L = 0.2$$
 to 0.5

Long term learning rate

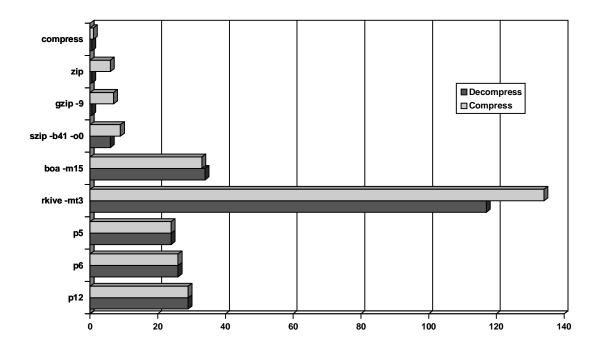
Compression Results



Compression in bits per character

- η_S and η_L tuned on *Alice in Wonderland*
- Tested on *book1* (Far from the Madding Crowd)
- P5 256K neurons, contexts of 1-4 characters
- P6 4M neurons, contexts of 1-5 characters
- P12 4M neurons, contexts of 1-4 characters and 1-2 words (unpublished)

Compression Time



Seconds to compress and decompress *Alice* (152KB file on 100 MHz 486)

Summary

Compression within 2% of best known, at similar speeds 50% better (but 4x-50x slower) than *compress*, *zip*, *gzip*

Fast because

- Fixed representation only output layer is trained (5x faster)
- One pass training by variable learning rate (25x faster)
- Bit-level prediction (16x faster)
- Sparse input activation (5-6 of 4 million, 80x faster)

Implementation available at http://cs.fit.edu/~mmahoney/compression/