
Fast Text Compression with
Neural Networks

Matthew Mahoney
Florida Institute of Technology

http://cs.fit.edu/~mmahoney/compression/

• How text compression works
• Neural implementations have been too slow
• How to make them faster

How Text Compression Works

Common character sequences can have shorter codes

Morse Code
e = .
z = --..

Shorter code Longer code
e z
dog dgo
of the the of
roses are red roses are green

Text compression is an AI problem

Types of compression

From fast but poor...
to slow but good

Limpel-Ziv (compress, zip, gzip, gif)

the cat in the hat the cat in h

Context Sorting (Burrows-Wheeler (szip))

the ca|t ---> 2t 1a 2_ 2e (run-length code)
the ha|t
 the c|a
in the|_
at the|_
 in th|e
hat th|e

Predictive Arithmetic (PPMZ (boa, rkive) and neural
network)

Predictor Arithmetic
Encoder

P(a)

P(b)

P(z)

x = the ca

t

P(x ≤ the cat)

Arithmetic Encoding

 A |B| C | D | E |F|G| H |I |J|K| L | M | N | O |P |Q|R | S | T | U|V|W|X|Y|Z

 TA |||| TE || TH | TI ||||| TO || TR | TU | TW|TY

 THA |||| THE |||| THI ||||| THO || THR || THU |||

0 1

.78 .83

.795 .81.798 .803

P("THE") = 0.005
Compress("THE") = .8

Binary code for x is within 1 bit of log2 1/P(x)
(Theoretical limit, Shannon, 1949)

Compression depends entirely on accuracy of P.

Schmidhuber and Heil (1994)
Neural Network Predictor

A

B

C

Z

A

B

C

Z

A

B

C

Z

A

B

C

Z

A

B

C

Z

A

B

C

Z

Last 5
characters

Next
Character

• 80 character alphabet
• 3 layer network
• 400 input units (last 5 characters)
• 430 hidden units
• 80 output units
• Trained off line in 25 passes by back propagation
• Training time: 3 days on 600KB of text (HP-700)
• 18% better compression than gzip -9

Fast Neural Network Predictor

E|L|E|P|H|A|N|01

N01

AN01

HAN01

PHAN01

EPHAN01

P(1)

Wi, Ni(0), Ni(1)

Xi

y

22-bit hash
function

• Predicts one bit at a time
• 2 layer network
• 222 (about 4 million) input units
• One output unit
• Hash function selects 5 or 6 inputs = 1, all others 0
• Trained on line using variable learning rate
• Compresses 600KB in 15 seconds (475 MHz P6-II)
• 42-47% better compression than gzip -9

Prediction

P(1) = g(Σi wixi) Weighted sum of inputs

g(x) = 1/(1 + e−x) Squashing function

Training

Ni(y) ← Ni(y) + xi Count 0 or 1 in context i

E = y − P(1) Output error

wi ← wi + (ηS + ηL/σ2
i)xiE Adjust weight to reduce error

σ2
i = (Ni(0) + Ni(1) + 2d)/(Ni(0) + d)(Ni(1) + d)

Variance of data in context i

d = 0.5 Initial count

ηS = 0 to 0.2 Short term learning rate

ηL = 0.2 to 0.5 Long term learning rate

Compression Results

p12

p6

p5

rkive -mt3

boa -m15

szip -b41 -o0

gzip -9

zip

compress

0 0.5 1 1.5 2 2.5 3 3.5

p12

p6

p5

rkive -mt3

boa -m15

szip -b41 -o0

gzip -9

zip

compress

Book1

Alice

Compression in bits per character

• ηS and ηL tuned on Alice in Wonderland
• Tested on book1 (Far from the Madding Crowd)

• P5 - 256K neurons, contexts of 1-4 characters
• P6 - 4M neurons, contexts of 1-5 characters
• P12 - 4M neurons, contexts of 1-4 characters and 1-2

words (unpublished)

Compression Time

p12

p6

p5

rkive -mt3

boa -m15

szip -b41 -o0

gzip -9

zip

compress

0 20 40 60 80 100 120 140

p12

p6

p5

rkive -mt3

boa -m15

szip -b41 -o0

gzip -9

zip

compress

Decompress

Compress

Seconds to compress and decompress Alice
(152KB file on 100 MHz 486)

Summary

Compression within 2% of best known, at similar speeds

50% better (but 4x-50x slower) than compress, zip, gzip

Fast because
• Fixed representation - only output layer is trained

(5x faster)
• One pass training by variable learning rate (25x faster)
• Bit-level prediction (16x faster)
• Sparse input activation (5-6 of 4 million, 80x faster)

Implementation available at
http://cs.fit.edu/~mmahoney/compression/

