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* How text compression works
» Neural implementations have been too slow
* How to make them faster



How Text Compression Works

Common character sequences can have shorter codes
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Text compression isan Al problem



Types of compression

From fast but poor ...
to slow but good

Limpel-Ziv (compress, zip, gzip, gif)
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Predictive Arithmetic (PPMZ (boa, rkive) and neural
network)
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Arithmetic Encoding
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P("THE") = 0.005
Compress("THE") = .8

Binary code for x iswithin 1 bit of log, 1/P(X)
(Theoretical limit, Shannon, 1949)

Compression depends entirely on accuracy of P.



Schmidhuber and Heil (1994)
Neural Network Predictor
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characters Character

80 character alphabet

3 layer network

400 input units (last 5 characters)

430 hidden units

80 output units

Trained off linein 25 passes by back propagation
Training time: 3 days on 600K B of text (HP-700)
18% better compression than gzip -9



Fast Neural Networ k Predictor
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22-bhit hash
function

Predicts one bit at atime

2 layer network

2% (about 4 million) input units

One output unit

Hash function selects 5 or 6 inputs = 1, al others 0
Trained on line using variable learning rate
Compresses 600K B in 15 seconds (475 MHz P6-11)
42-47% better compression than gzip -9



Prediction

P(1) = g(Zi wixi) Weighted sum of inputs

gx) =1/(1+¢€™) Sguashing function
Training

Ni(y) < Ni(y) + X Count O or 1 in context i

E=y-P(1) Output error

Wi — Wi+ (Ns+ NU/o%)XE  Adjust weight to reduce error

0% = (Ni(0) + Ni(1) + 2d)/(N;(0) + d)(Ni(2) + d)
Variance of data in context i

d=05 Initial count
Ns=0t00.2 Short term learning rate

nL=02t00.5 Long term learning rate



Compression Results

-
2

compress

zip

gzip -9

szip b4l '°°#
boa 'mlsﬁ
rhive 'm”’m mBookl
OAlice

ps#
pe#

1 1 1 1 1 1 1 1
0 0.5 1 15 2 25 3 35

Compression in bits per character

Ns and N, tuned on Alice in Wonderland
Tested on bookl (Far from the Madding Crowd)

P5 - 256K neurons, contexts of 1-4 characters

P6 - 4M neurons, contexts of 1-5 characters

P12 - 4M neurons, contexts of 1-4 characters and 1-2
words (unpublished)



Compression Time
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Seconds to compress and decompress Alice
(152K B file on 100 MHz 486)



Summary

Compression within 2% of best known, at similar speeds
50% better (but 4x-50x slower) than compress, zip, gzip

Fast because
» Fixed representation - only output layer istrained
(5x faster)
* One passtraining by variable learning rate (25x faster)
 Bit-level prediction (16x faster)
e Sparseinput activation (5-6 of 4 million, 80x faster)

|mplementation available at
http://cs.fit.edu/~mmahoney/compression/



