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Abstract

This paper describes the PAQL losdessdata compresgon program. PAQ1 is an arithmetic encoder using aweighted
average of five bit-level predictors. The five models are: (1) abland model with 0 or 1 equally likely, (2) a set of
order-1 through 8 nonstationary n-gram models, (3) a string matching model for n-grams longer than 8, (4) a
nonstationary word unigram and bigram model for English text, and (5) a positional context model for data with
fixed length records. Probabiliti es are weighted roughy by n?/tp(0)p(1) where nisthe cntext length, t is the age of
the training data (number of subsequent events), and p(0) and p(1) are the probabiliti es of a0 or 1 (favoring long
runs of zeros or ones). The ajing of training statistics makes the model nonstationary, which gves excelent
compresson for mixed datatypes. PAQ1 compresses the mncatenated Calgary corpusto 1.824 lits per charader,
which is 4.5% better than RK (Taylor, 1999 and 2.9% better than PEFMONSTR (Shkarin, 2001), the top programs
rated by Gil christ (2007) and Ratushnyak (2001) respedively, althoughthose programs do slightly better on
homogeneous data.

1. Introduction

The best general purpose losdesscompresson algorithms are prediction by partial match, or PPM (Bell, Witten, and
Cleay, 1989 and the Burrows-Wheder transform, or BWT (Burrows and Wheder, 1994). These ae both
stationary models, in the sense that the statistics used to estimate the probability (and therefore the amde length) of a
symbal are independent of the age of the training data. However, many types of data ae nonstationary, in that newer
statistics are more reliable. This can be shown by plotting the probability of matching two randomly chosen n-grams
(sequences of n charaders) as a function of t, the distance between them. Table 1 shows the result for Thomas
Hardy's Far from the Madding Crowd, which is also book1 from the Calgary corpus (Bell, Witten, and Cleay,
1989. Probabiliti esfor the 768771 hyte file were estimated for eat t by sampling one milli on random pairs
separated by t plus or minus 10%.

n t=1 10 100 1000 10* 10°
1 2.133 6.450 6.500 6.427 6.411 6.403
2 0.027 0.650 0.734 0.701 0.691 0.689
3 0.016 0.129 0.193 0.166 0.161 0.157
4 0.013 0.045 0.078 0.063 0.056 0.056
5 0.012 0.017 0.037 0.025 0.021 0.021
6 0.011 0.010 0.017 0.011 0.007 0.006

Table 1. Percent probability of matching n conseautive charaders eparated by t in Far from the Madding Crowd.

Theped at around t = 100is peauliar to natural language text, and is due to the tendency of words not to repea in
close proximity, asin the the. The long range drop df from 100and 1 is due to the cache effec (Clarkson and
Robinson, 1997, the tendency of wordsto be used in topic-spedfic contexts confined to a portion of the text. This
effed can be used to improve compresson by assgning higher probabiliti es (and shorter codes) to words that have
already appeaed receantly.

The cabe dfed can be observed in al kinds of data, not just text. For example, the dfed can be seen in the DNA
sequence E.coli from the Canterbury corpus (Arnold and Bell, 1997 largefile wlledionin Table 2. Thefile
consists of 4,638690 bytes from the dphabet a, t, ¢, and g.



n t=1 10 100 1000 10* 10° 10°

1 26.263 25.840 25.481 25.183 25.025 25.035 24.989
2 6.760 6.978 6.739 6.541 6.429 6.429 6.355
3 1.903 1.971 1.832 1.719 1.692 1.663 1.677
4 0.566 0.564 0.513 0.461 0.453 0.438 0.441
5 0.146 0.164 0.151 0.124 0.124 0.118 0.116
6 0.030 0.047 0.045 0.034 0.032 0.032 0.033

Table 2. Percent probability of matching n conseautive DNA nucleotides sparated by t in E.coli.

The cabe dfed canbefoundin 13 d 14filesin the Calgary corpus (al except bib) and in 13 o 14filesin the
Canterbury corpus regular and large fil e sets (all except kennedy.xls). Y et neither of the best algorithms, PPV or
BWT exploit thiseffed. For example, if theinput to be compressed is

...can...can...can...cat...cat (1)

then to code the t at the end of the string, PPM would estimate its probabilit y by counting charadersin matching
contexts (ca) with equal weight, regardlessof their age. In thisexample, t occurred previously 1 out of 4 timesin
context ca, so that the next t would be assgned a amde gproximately -log, 1/4 = 2 hitslong (negleding for the
moment the posshility of novel charaders, such as car).

A BWT compressor sorts the input charaders by their contexts prior to compresson. For instance, context-sorting
(1) might produce the sequencetnntn because they are dl preceded by ca, and sorting brings them together. The
exad order depends on the precealding charaders (before the ca), and not on their original order, so the model is
stationary regardlessof the cmpresson algorithm used on the transformed input.

Gilchrist’s (2001 Archive Comparison Test (ACT) ranks 165 PC and Madntosh based compresson programs
(including different versions) on various test sets including the 18 fil e version of the Calgary corpus (adding four
small text fil es, paper3 through paper6). The top ranked programs as of July, 2001, from best to worst, are RK
1.02b5(Taylor, 1999, RK 1.04 (Taylor, 2000, SBC 0.910(Mé&kinen, 2001), BOA 0.58b(Sutton, 1998, and ACB
2.00c (Buyanovsky, 1997). Ratushnyak (2001) ranked a smaller number of programs on the Canterbury corpus, and
found the top threeprograms as of mid 2001to be PEMONSTR var. H, PRMD var. H (Shkarin, 2001, 2002, and
RK 1.02b5 All of these programs give 30-40% better compresson than popular programs such as COMPRESS
(1990, PKZIP (1993, or GZIP (Gaill y, 1993, athoughthey are dower and use more memory.

SBCisaBWT compressor. All of the others use PPM (except ACB, which uses associative mding). The PPM
programs differ in how they compute the probability of novel charaders. RK and BOA are based on PRMZ (Bloom,
1998. PPMZ uses an adaptive seaond level model to estimate the optimum value & a function of the order, the total
charader count, number of unique dharaders, and the last one or two bytes of context. RK also models certain
contexts to improve compresson on certain types of dataincluding ASCII text, exeautables, and 8, 16, and 32 ht
numeric data. RK and BOA boath produces lid archives, using the statistics from one fil e to improve cmpresson
on another. They perform an analysisto determine the optimal ordering prior to compresson.

PPMD and PEMONSTR are based on PPMII, or PPM with information inheritance (Shkarin 2002. PPMII, like
PPMZ, uses asemndary escape model. Unlike PPMZ and most other PPM models, which uses gatistics from the
longest matching context, PPMII inherits the statistics of shorter contexts to set theinitial estimate when alonger
context is encountered for the first time. This hasthe dfed of including statistics from contexts shorter than the
longest match. PPMONSTR isavariation of PPMD that gives better compresgon at the st of exeaution speed.
The maximum order (longest posshle antext) is 16 for PAMD and 64for PPMONSTR.

ACB uses asociative mding. Theinput is orted by context, asin BWT, but instead of compressng the transform,
the context-sorted datais used to build a permuted index (but sorted reading badkwards) which grows as dataisread
in. Suppose that the input stringis cx, where c isthe part already encoded (the context), and X is the remaining input.
To encode x, we look up bah ¢ and x in the permuted index, matching as many charaders as possble of ¢ reading
left and x reading right. Often, the best two matches are & the same placein the index, or separated by some small



distance, L. Suppose the best match reading to the right is n characters, Xox;...X,1. Then we encodethe next n+ 1
characters Xox;...X, asthetriple (L, n, X,,). Associative coding is stationary because the context sorting loses the
relative position of the context, as with BWT.

Popular, fast compression programs such as COMPRESS, PKZIP, and GZIP use Ziv-Lempel (LZ) compression
(Bell, Witten, and Cleary, 1989). Inthe LZ77 variant (used by GZIP), strings that occur more than once are replaced
with pointers (offset and length) to previous occurrences. This exploits the cache effect because closer strings can be
encoded using fewer bits for the offset, corresponding to a higher probability. However, LZ77 wastes code space
whenever a string could be coded in more than one way. For example, the third occurrence of canin (1) could be
coded as a pointer to either the first or the second occurrence, and we need some space to encode this arbitrary
choice. LZ78 (used by COMPRESS) eliminates this redundancy by building a dictionary and coding repeat strings
as pointersto dictionary entries. (Thus, it is stationary). This does not entirely eliminate redundancy because we
could till find more than one encoding by choosing different token boundaries. For instance, we could encode can
using three pointers to three one-character entries. Although COMPRESS, PKZIP, and GZIP compression is
relatively poor, part of the reason is that they sacrifice compression for speed and memory economy. (ACB aso
codes redundantly, but still achieves good compression). The top compressors use large amounts of memory (16-64
MB or more) and are many times slower.

The rest of this paper is organized as follows. In section 2, we describe the architecture of the PAQL1 archiver, abit-
level predictor using a weighted combination of models and an arithmetic encoder. In sections 3 through 6, we
describe four model components. a nonstationary order-8 n-gram model, along string matcher for n > 8, aword
bigram model for English ASCI|I text, and afixed length record model. In section 7, we compare PAQ1 with top
ranked compression programs. In section 8, we isolate the effects of the PAQ1 components. In section 9, we
summarize and suggest future directions.

2. The PAQ1 Architecture

PAQL isa predictive arithmetic encoder, like PPM, except that it uses a binary alphabet to simplify encoding and
model merging. The ideaisto encode an input string s as a binary number x such that for any randomly chosen
string r,

p(r<s)<x<p(r<s 2

assuming some ordering over the strings. The range of x satisfying (2) has magnitude p(s), thus we can always
encode a number that satisfies the inequality with at most log, p(s) + 1 bits, which is within one bit of the Shannon
limit (Shannon and Weaver, 1949).

Howard and Viller (1992) describe efficient methods for encoding x in O(|g]) time, where |9 is the length of sin bits.
The method used by PAQL isto estimate p(s) one bit at atime as the product of the conditional probabilities
P(S)P(S2IS) P(S3lS1Sy) - P(SIS1S9%s---Svvt) . We keep track of the range of x satisfying (2), initialy [0,1), and as each bit
is predicted, we divide the range into two parts in proportion to p(0) and p(1). Then when the bit isinput, we the
corresponding segment becomes the new range. When the range becomes sufficiently narrow that the leading base-
256 digits become known (because they are the same for the lower and upper bound), then they are output. The
point where the range is split is rounded so that only 4 digits (32 bits) of the bounds need to be kept in memory. In
practice, this rounding adds less than 0.0002 bits per character to the compressed output.

The advantage of using bit prediction isthat it allows models that specialize in different types of datato be integrated
by using a weighted combination of their predictions. In PAQ1 there are five models, each outputting a probability
and a confidence. Thisisrepresented as apair of non-negative counts, ¢y and ¢, which expresses the idea that the
probability that the next bit will bea 1 is p(1) = ¢,/c with confidence (weight) ¢, wherec = ¢ + ¢;. Equivalently, it
represents a set of ¢ independent experiments in which 0 occurred ¢, timesand 1 occurred ¢; times. The models are
combined simply by adding their counts, i.e. p(1) = X ¢; / ¢ with the summation over the models.

Because it ispossible to have p(1) = 0 or p(1) = 1, which would imply an infinitely long code if the opposite bit



actually occurs, we include a bland model to ensure that this does not happen. The bland model isco=1and ¢; = 1,
which expresses p(1) = 1/2 with confidence 2. The bland model by itself neither compresses nor expands the input.

3. The Nonstationary n-gram M odel

PAQ1 guesses the next bit of input by finding a sequence of matching contexts in the input and recording the
sequence of bitsthat followed. An n-gram model, with n = 1 through 8, consists of the previous n - 1 whole bytes of
context, plusthe 0 to 7 bits of the partially read byte. For example, suppose we wish to estimate p(1) for the fourth
bit of thefinal tincatin(1). The 3-gram context is ca,011, consisting of the last n - 1 = 2 whole characters, plus the
bitsread so far. This context occurs four times prior to the current occurrence (both n and t begin with the bits 011).
In the first three occurrences (can), the next bit is 0. In the fourth (cat), the next bit is 1. Thus, the next-bit history in
this context is 0001.

The next question iswhat to do with this history. As mentioned, PPM, BWT, and associative coding models would
assume that the outcomes are stationary and independent, and weight all bits equally for p(1) = /4. However, from
section 1 we saw that the most recent data ought to be given greater weight. Some possibilities are:

¢ Tempora bigram model. Each event is considered in the context of the previous event. Since no events have
yet occurred in the context 1, p(1) = 0.5.

¢ Inversereaction model. Only the last occurrence of each event is counted, with weight 1/t, wheret is the age.
The age of thelast 1is 1, and the age of thelast 0is2. Thus, p(1) = 1/(1 + 1/2) = 0.67.

¢ Inversetemporal model. Each event with agetisweighted by 1/t, or /4, 1/3, 1/2, 1. Thus, p(1) = 1/(1/4 + 1/3
+1/2+1)=0.48

These models require different amounts of state information to be kept by the source. A stationary, independent
sourceis stateless. A temporal bigram model requires one bit of state information to save the last bit. Aninverse
reaction model requires saving not only the last event, but also the number of timesin arow that it occurred. An
inverse temporal model isthe most complex. It must save a complete history so that each event weight can be
discounted by 1/t after timet. Thismodel is not stationary because it requires unbounded memory, although it can
be approximated by a sum of exponentially decaying counts over a wide range of decay rates.

Thereis evidence that the brains of animals may use an inverse temporal model or inverse reaction model. Classical
conditioning and reinforcement learning are consistent with both models. According to Schwartz and Reisberg
(1991), the rate of learning in classical conditioning isinversely proportional to the time between the conditioned
stimulus (a signal, such as adog hearing a bell) and the unconditioned stimulus (the dog gets meat, causing it to learn
to salivate when it hears the bell). Also, the rate of learning in reinforcement conditioning isinversely proportional
to the time between the behavior being taught (response) and the reward or punishment. In both cases, the
significance of the first event (signal or response) isin inverse proportion to itsage. These results suggests that this
property holds in many types of data that isimportant to our survival, or else our brains would not have evolved this

way.

One problem with all temporal modelsis that they give incorrect results when the datareally is stationary and
independent, such as arandom source. The more we weight the model in favor of the most recent events, the smaller
the sample from which to estimate the probability, and the less accurate the result. For instance, an inverse reaction
model can never give a probability between 1/3 and 2/3, even if the true probability is 1/2.

Without knowing the answer, PAQ1 uses an ad-hoc solution. It istemporal in that it favors recent events, although
for five or fewer eventsit is equivalent to a stationary model. It also weights the model in favor of long runs of zeros
or ones, which indicate that the estimate p(1) is highly reliable. Theruleis:

If the training bit isy (O or 1) then increment c, (Co Or Cy). ©)]
If c1.y > 2, then set ¢y = €1y / 2+ 1 (rounding down if odd).

Table 3 shows the state ¢, and ¢; on input 00000001111, and output p(1) when combined with a bland model.



I nput Co C1 p(1) +bl and wei ght
0000000 7 0 1/9 = 0.11 10
00000001 4 1 2/7 =0.28 9
000000011 3 2 3/7 =0.43 7
0000000111 2 3 4/7 = 0.57 7
00000001111 2 4 5/8 = 0.62 8

Table 3. Predictor state and output for the training sequence 00000001111

Thisrule has the property that when the outcome is highly certain, when p(0) or p(1) isnear 1, the weight is
increased, roughly in proportion to 1/p(0)p(1). Thisis because the only way for c to become largeisto have along
run of zeros or ones.

We use a compromise between a stationary and inverse temporal model because we do not know a-priori whether
the datais stationary or not. On random data, which is stationary, rule (3) expands the data by about 6.6%. We
could reduce the expansion by biasing the model more toward a stationary one, for example:

If the training bitisy (0 or 1) then increment c, (5)
If ¢y > 4thencyy =3¢ /4 +1

But in practice, this hurts compression on most real data.

PPM models normally use a 256 symbol alphabet. They generally use the longest context for which at least one
match can be found in the input, up to some maximum (usually about n = 5). However, this was found to give poor
compression using a binary alphabet, probably because information from the lower order contextsis never used.
Instead, PAQ1 combines all eight n-gram models (for n = 1 to 8) with weight n®. If we make some inverse temporal
assumptions about the data, then n? is the predictive value of the context divided by its frequency. The predictive
value is n because the event of a mismatch between the current and matched context last occurred n characters ago,
so the next character should mismatch with probability 1/n. The frequency of the context is proportional to 1/n
because if the probability of a mismatch is 1/n then the expected length of the match is about 2n. If half of all
matches of length n match for 2n symbols, then frequency isinversely proportional to length. A number of other
weightings were tried (e.g. 1, n, n%, 2", hand tuning for each n, etc.) and n? gives the best compression on most files.

To conserve memory, PAQL represents the counts ¢y and ¢; using asingle 8-bit state. Thisis possible because both
counts cannot be large at the same time, and because large counts can be approximated without significant loss of
compression. The counts 0 through 10 are represented exactly. The other possible values are spaced further apart as
they get larger: 12, 14, 16, 20, 24, 28, 32, 48, 64, 96, 128, 256, and 512. When alarge count needs to be
incremented from a to b where b - a > 1, then the increment isimplemented by setting the count to b with probability
1/(b - a). Thisrepresentation was found to compress only 0.05% worse on typical data than using an exact
representation. A pseudo-random number generator (based on the recurrence r; = ri.o4 XOR ris5 and afixed seed) is
used to ensure platform independence.

PAQL stores the counts for 2%° (8M) contextsin a16 MB hash table. Each table element is two bytes: one byte for
the counter state, and one byte for a hash checksum to detect collisions. The context is hashed to a 32-bit value, in
which 23 bits are used to index the hash table and 8 bits are used as a checksum. Collisions are resolved by trying 3
successive locations to find a matching checksum or unused element (c = ¢, + ¢; = 0), and if none are found, then the
element with the lowest total count (n) isreplaced. Using an 8-bit checksum means that collision detections are
missed with probability 1/256, but this was found to have a negligible effect on compression.

4. The String Matching M odel

We could expand the n-gram model to higher n, but this wastes memory because we need to store bit counts for long
contexts, most of which may never reoccur. For each byte of input, we need to add 8 hash table entries, or 16 bytes
total. Instead we could store the input in a buffer, and search for matching contexts and compute the bit counts on



the fly. Because long matching contexts are highly predictive and likely to agreewith ead other, it is aufficient to
find just one match (the most recent) and increase the weight with the assumption that there may be others. PAQ1
uses aweight of 3n? (values of 2n? to 4n? work well) for amatch of n bytes.

PAQ1 uses arotating 4 MB (2% charadter) buffer and an index of 1M (2%°) 3-byte pointersindexed by a hash of the
last 8 bytes with no collision resolution. If amatch isfound, PAQL continuesto useit until an urmatched bit is
found. Otherwisethe aurrent context is compared with the location pointed to by the index to look for amatch. The
index is updated after eat charader isread. The total sizeof the model is7 MB.

5. TheWord Bigram Model

Teahan and Cleay (1997 and Jiang and Jones (1992 note that compresson of English text improves when the
symbal alphabet is taken to be whole words rather than letters. PAQL uses two word n-gram modelsforn=1and 2
A word is defined as a sequence one or more letters (a-z) up to 8letterslong (truncating the front if longer), and case
insensitive. For the unigram model, the mntext is a hash of the most recent whole or partial word, the previous byte
(whether or not it is alphabetic, and case sensitive), and the 0 to 7 Lits of the aurrent byteread so far. The weight is
(N + 1) where ng is the length of the word. The bigram model aso includes the previous word, skipping any
charadersin between. Itsweight is (n; + no + 2)? where n, isthe length of the previous word. For example, in (1),
the unigram context of the final charader is ca (with 4 matches and weight 9) and the bigram context is cat, ca (with
no matches and weight 49). The weights are goproximately the same & the n-gram model when the spaces between
words are included.

The bit counts assciated with ead context are stored in a hash table of 222 (4M) counter pairs asin the
nonstationary n-gram model, for atota sizeof 8 MB.

6. TheFixed Length Record Model

Many types of data ae organized into fixed length records, such as databases, tables, audio, and raster scanned
images. We an think of such data & having rows and columns. To predict the next bit, we look at the sequence of
bitsin the mlumn aboveit, and optionally at the bits precadingit in the arrent row as context.

PAQL1 looks for evidence of fixed length records (rows), indicated by an 8 hit pattern (not necessarily on a byte
boundary) that repeasr = 4 or more times at equally spacel intervals. If it finds sich a pattern with row length k=9
bits (not necessarily on a byte boundary), then the foll owing two contexts are modeled: a zeo order context
consisting only of the column number, and an 8-bit context plus the lumn nunber. Their weights are 4 and 16
respedively. The weights were determined in an ad-hoc manner, but in keeping with the general principle that
longer or lessfrequent contexts $ould recave more weight.

To deted the end of the table, PAQL sets atimer to rk (rows times columns) when atable is deteaed, which expires
after rk bits are read with no further detedion. It is passble that another table may be deteded before the first
expires. If the new table has a higher value of rk than the arrent value, then the new values of r and k take dfed.

For example, suppose theinput is:

$ 3.98\n
$14. 75\ n
$ 0.49\n
$21.99\ n

where\nisthe linefeed charader. The model records for eat 8 hit sequencesuch as“$”, “.”, or “\n” the pasition of
the last occurrence, the interval k to the occurrence before that, and the number of timesr in arow that the interval
wasthe same. Inthisexample, r = 4 and k = 56 htsfor ead of these threepatterns. Thisis sufficient to establish a
cycle length of k goodfor the next rk = 448 lits (4 lines) of input unlessa higher rk is sen in the meantime.

The next bit to predict isthe first bit of the next line, right under the “$”. For the weight-4 model, the context is



simply the bit paosition in the file mod k = 56. In this context, the bit counts ¢, and ¢; come from the first bit of the
“$" inthe wlumns above. Sincethefirst bit of “$" is0, we have ¢ =4, ¢; = 0 for p(1) = 0 with confidence 16. For
the weight-16 model, the context is a hash of “\n” and the bit pasition mod 56 Again, thisoccurs 4 times, so ¢, = 4,
c¢1 =0, for p(1) = 0 with confidence 64. We need bah contexts because (for example), only the first context is useful
for predicting the dedmal point charader.

The zeo hit context is dored in atable of counters (as in the nonstationary n-gram and word models) of size 2*?
(2K). The 8-bit contexts are stored in a hash table of 2'° (32K) entries, for atotal size of 68K bytes.

7. PAQ1 Performance

PAQ1 was tested against popular and top ranked compressors on the Calgary corpus, awidely used data
compresson benchmark, and on the Reuters-21578corpus. Threetests were performed. In the first test, the
programs compressed the Calgary corpus files sparately into asingle “solid” archive (all owing compresson aaoss
files, if supparted), or 14 separate fil es if the program does not suppart archiving. The total size of the ammpressd
filesisreported. Inthe second test, the 14 fil es of the Calgary corpus were concaenated (al phabeticdly by file
name) into asingefile of size 3,141,622 kytes. In the third test, the 22 fil es of the Reuters-21578coll edion (Lewis,
1997 were concaenated (in numericd order) into asinge file of size 28,329,337 kytes. This corpus consists of
21,578Endlish rews articlesin SGML format. The tests were performed on a 750MHz Duron with 128KB L2
cade and 256MB memory under Windows Me. Runtimes (in seands) are for compresson for the first test only.

PAQ1 was compared with the top 5 pograms ranked by ACT, the top 3ranked by Ratushnyak, and with the winner
of the Calgary Corpus Chall enge (Broukhis, 2001). For eat program, options were seleded for maximum
compresson within 64 MB of memory acording to the documentation for that program. In some caes, maximum
compresson depends on the data being compressed, which requires experimentation with diff erent combinations of
options. When the best options differ for different input files, all combinations used are reported.

In the Calgary chall enge, the top program is an unramed submisson (which we cdl DEC) made by Maxim Smirnov
on Aug. 14, 2001for asmall cash prize The chall enge requires only the submisson of the compressed corpus and a
decompresson program (that must run within 24 hours on a Windows PC with 64 MB memory), which is evaluated
by its combined size dter the program and datais compressed by an archiver from alist supplied by Broukhis. The
reason that the decompresson program itself isincluded is because the rules all ow part or all of the compressed data
to beincluded in the program. The chall enge hastwo parts, one program to extrad the entire achive (solid), and
one to decompressfil es read from standard input (split archive). The submitter must demonstrate general purpose
compresson by compressng an arbitrary file of 0.5to 1 MB supplied by the challenge to within 10% of GZIP and
decompressng it with the split version of the submitted program. Detail s of DEC are not avail able, but Smirnov is
also the author of PPMN (Smirnov 2002. PPMN detail s are not avail able dther, but its optionsindicaeit isan
order-9 PPM encoder that performsfile analysis to automaticdly seled optimizations for text, runlength encoding,
“e8 transform”, and “interleaved coding’. The & transform is an optimization for DOS/Windows .EXE filesin
which relative jump/cal addresses are trandated to absolute aldresses.

The test results are shown in Table 1, alongwith COMPRESS PKZIP, and GZIP. Inthetable, thetypeislLZ (77 o
78), PRMD, PRMZ, BWT (Burrows-Wheder), AC (asociative ading), or NS (nonstationary n-gram). -sindicaes a
solid archive (compresson aaossfiles). MB isthe memory usage in megabytes where known. Timeis eondsto
compressthe 14 fil es of the Calgary corpus (decompressfor DEC because no compressor isavailable). Sizesare
for the compressed fil e or fil es after compressng the Calgary corpus as 14 files or concaenated into asingefile, and
to compressthe mncatenated Reuters-21578corpus. The meanings of the options are & foll ows:

GZIP -9: maximum compresson

ACB u: maximum compresson.

BOA -m15-s: 15 MB memory (maximum), solid archive.

PPMD/PPMONSTR e -m64 -08/16/128 encode, 64 MB memory, order 8/16/128. -01: order 64 context length
for var. H. Note: lower orders use lessmemory, thus give better compresson for Reuters.

¢ SBCc-m3-bl6 compress maximum compresson (adds 12 MB memory), 16512k BWT block size (8 MB



blocks compressed independently, memory usage is 6 times block size).
¢ RK -mx3-M64 -ft: maximum compression, 64 MB memory, filter for text (overriding automatic detection).
¢  PPMN e-09-M:50-MT1: encode, PPM order 9 (maximum), 50 MB memory (maximum), text mode 1 (best

compression)
Pr ogram Opt i ons Type MB 14 files Ti me Concat . Reut ers
Original size 3, 141, 622 3,141,622 28, 329, 337
COVPRESS LZ78 <1 1,272,772 1.5 1,318,269 10,406,527
PKZI P 2. 04e Lz 0.4 1,032, 290 1.5 1,083, 217 8, 334, 457
&IP1.2.4 -9 Lz77 <l 1,017,624 2 1, 021, 863 8, 114, 057
ACB u AC-s <16 766,322 110 769,363 4,567,213
BOA 0. 58b -ml5 -s PPMZ-s 15 747,749 44 769,196 4, 326,917
PPMD H e -nm64 -016 PPM | 64 744, 057 5 759,674 4,286,536
e -nm64 -o08 PPM | 64 746, 316 5 762, 843 3, 850, 243
SBC 0. 910 c -nm3 -bl6 BWI 65 740, 161 4.7 819, 027 4,197,501
PPMONSTR H e -nb64 -0l PPM | 64 719, 922 13 736,899 4, 465, 502
e -nm64 -o08 PPM | 64 726, 768 11 744, 960 3,917, 444
RK 1.02 b5 -nx3 -M4 PPMZ-s 64 707,144 44 750, 744 4,404, 256
-mx3 -Mb4 -ft PPMZ-s 64 717,384 44 750, 744 4, 207, 960
RK 1.04 -mx3 - Vo4 PPMZ-s 64 712,188 36 755, 872 3, 978, 800
-mx3 -Mb4 -ft PPMZ-s 64 730, 100 39 755, 876 3, 857,780
PPWN 1. 00b1-M 50 -MI1 - PPM 50 716, 297 23 748, 588 3, 934, 032
PPMONSTR | pre -m64 -0128 PPMI| 64 696, 647 35 703,320 4,514,279
(3/3/02) -nmb64 - 08 PPM | 64 704,914 30 707,581 3, 781, 287
DEC- SPLIT ? <64 685,341 (27 to deconpress)
DEC- SOLI D ?-s <64 680, 558 (27 to deconpress)
PAQL NS- s 48 716,704 68.1 716,240 4,078, 101

Table 4. Compression results for PAQ1 and popular or top ranked compression programs on the Calgary corpus (14
files or concatenated) and the Reuters-21578 corpus.

The best compression on the Calgary corpusis 680,558 bytes by the solid version of DEC asaHA (Hirvola, 1993)
archive. The archive decompressesto 11 data fileswith atotal size of 672,739 bytes, plusthe 24,576 byte
decompression program, DEC.EXE. It is possible to compress DEC.EXE to 7056 bytes with PAQ1 (better than HA,
RK or PPMONSTR) which further reduces the overall sizeto 679,795 bytes, or 1.731 bits per character (bpc). The
split version is a 685,341 byte HA archive containing 14 compressed files with atotal size of 677,624 bytes, plusa
24,576 byte executable, compressible to 6892 bytes by PAQL for atotal size of 684,516 bytes. No compression
program is available, nor are any details of the algorithm used.

Among general purpose programs, the best on the Calgary corpusis PPMONSTR var. |pre dated 3/3/02, which is
currently undergoing development and not yet released as of thiswriting. Among released compressors, RK 1.02b5
with the -mx3 (maximum compression) option, at 707,144 bytes. Only PPMONSTR Ipre, RK (1.02b and 1.04) and
PPMN beat PAQ1, which compresses to 716,704 bytes, or 2.9% larger than the 696,647 bytes for PPMONSTR Ipre.
RK and PAQ1 both produce solid archives, using statistics from other files. However, when the filesare
concatenated, PAQ1 has the best compression of al programs except PPMONSTR Ipre. Concatenation hurts
compression in all programs except PAQ1L, which compresses to a slightly smaller 716,240 bytes (1.824 bpc). PAQ1L
concatenates the input filesinternally. so the dlight difference is due to a smaller header.

On the Reuters corpus, RK, PPMD, and PPMONSTR beat PAQ1. The smallest is 3,781,287 bytes (1.068 bpc) by
order-8 PPMONSTR lprevs. 4,078,101 bytes for PAQL (7.8% larger).

7.1. Calgary Corpus Detailed Results

Table 5 shows compression on individual files in the Calgary corpus for the top compressors, RK 1.02, PAQL,



PPMONSTR H, and DEC-SPLIT, with options set for maximum compression and 64 MB memory asin Table 4.
For RK and PAQL1 sizes are shown for both solid and split archives. For solid archives, sizes shown are as reported
by the programs and do not include the archive header. DEC also produces solid archives, but this information was
not available. RK analyzes the input files and reorders them prior to producing a solid archive. For consistency, the
same ordering was used for PAQL. The table also tests the effect of reordering in RK order on the concatenated
corpus vs. concatenation in alphabetical order by file nameasin Table 4.

Ori gi nal Solid archive As separate files

File Si ze RK 1.02 PAQL RK 1.02 PAQL PPMONSTR DEC- SPLI T
PAPER2 82199 22111 22323 22204 22352 21842 21147
PAPER1 53161 13085 12783 14748 14521 14258 14020
BOCK1 768771 201950 206539 202424 209195 205165 195338
BOCOK2 610856 139591 132151 138624 137672 136077 132832
oBJ1 21504 9397 10027 9488 9463 9422 9092
GEO 102400 47960 52244 47740 51329 53236 46879
oBJ2 246814 63754 66416 61932 64151 65131 63595
PI C 513216 30595 46975 30684 45973 45157 24217
Bl B 111261 24146 23011 24236 24293 23334 23471
PROCGL 71646 13692 12661 13260 12708 12470 12688
PROGC 39611 11614 10571 11456 10824 10721 10737
PROGP 49379 10207 9048 9252 8725 8609 8944
TRANS 93695 14273 13465 14696 14146 13747 14360
NEWS 377109 104435 97917 105124 102078 100771 100304
Tot al 3141622 706810 716386 705860 727430 719940 677624
Concat enated RK 750500 716159

Concat enat ed al pha 750740 716240
Table 5. Calgary corpusresults on individual filesfor top compressors. Best results are shown in bold.

The most notable differences between compressorsisthat RK and DEC outperforms PAQL and PPMONSTR on the
binary files OBJ2 and GEO, and especially PIC. OBJ2 isaMacintosh executable organized into 16-bit words. GEO
contains seismic data organized into 32-bit words. PIC isablack and white image of a page in atextbook (text in
French and aline diagram) at 200 dots per inch, organized as a 1728 by 2376 bitmap. RK has a deltafilter which
replaces each 8, 16, or 32 bit word with the difference from the previous word. On text files, DEC is best, followed
by PPMONSTR, PAQ1 and RK.

It isinteresting to note that producing a solid archive did not help RK at all! The solid archiveis 0.1% larger than
the 14 separately compressed files. On the other hand, the solid PAQL archive is 1.5% smaller. Nor doesthefile
order make much difference. When the files are concatenated in RK order vs. aphabetical order, the output is only
0.03% smaller for RK and 0.01% smaller for PAQL. This seems rather insignificant when we consider that the loss
of file boundary information expands RK output by 6.2% and PPMONSTR by 2.3%, but does not hurt PAQL at all.
Using solid archives, PAQL compresses better than RK for 8 of 14 files and better than PPMONSTR H for 7 of 14
files.

7.2 Confusion Tests

The next set of experiments tests for specialized models in the top compressors by modifying some of the filesin
ways that should confuse these models without changing overall entropy. The files PIC, GEO, and BOOK1 from the
Calgary corpus were used, since it is possible that the top compression programs might be tuned to this widely used
benchmark, and these files are representative of the different data typesin this corpus.



Thefirst test was on PIC, a1728x 2376image with one bit per pixel. Theimage was cropped by removing 8 pixels
fromtheright edge, i.e. removing every 216th byte. All of the removed bytesare 0. PAQL, PEMONSTR (-01,
order 64), and PPMN all compresseither file to about 45 KB, but thistrivial change caised the mmpresson by RK
1.02to go from 30K to 4&. Thissuggests that RK has amodel spedfic to PIC. (Macolm Talyor later confirmed
that RK transposes the rows and column to get better compresson).

The seand test was on GEO, which contains sismic datain 32-bit records. Most of the records consist of large
blocks where every record has the form (in binary)

XLO000KX XXXXXXXX XXXXXX00 00000000

In other words, the first hex digitis4 or C, and the last byteis 0. The x’'sindicate gparently random bits, although
there is ome crrelation between adjacent records in the leftmost bits. An n-gram model would missthis because of
the intervening random data. The experiment was to remove this obstade by de-interleavingthe file. Every fourth
byte was sampled to produce four small er files, which were mncaenated. The result was that the first 1/4 of thefile
contains bytes of the form x10000kx, and the last 1/4 contains all zeros. Thisimproves compresson by
PPMONSTR from 53 KB to 49KB, and similarly in PEMN, but hurts RK, which goesfrom 47 KB to 49KB. The
effed in PAQL isto render the fixed record model useless but thisis off set by bringing the mrrelated bytes together
asin PAMONSTR, so the compresson remains about 51 KB.

The third experiment was to perform a simple substitution cipher on BOOKL to test for models gedfic to ASCII
text. The dpher isto multiply ead byte by 3 (mod 256. For instance a (97) becane # (3 x 97 = 35 (mod 256).
Thishurt al three @ompressors. PPMONSTR was affeded only dightly, going from 205KB to 207KB. RK went
from 202 KB to 213KB, and PAQ1 went from 209KB to 219KB. This siggests that the word model in PAQ1
helps compression of English text about as much as the text filter (-ft) in RK. PPMN, which had the best
compresson, suffered the most, going from 197KB to 212KB.

File Oi gi nal PAQL RK 1.02 PPMONSTR PPMN  DEC-split
PI C 513, 216 45, 973 30, 684 45, 157 46, 583 24,217
Pl C cropped 510, 840 45, 953 48, 252 45, 200 46, 596
GEO 102, 400 51, 329 47,740 53, 236 52,272 46, 879
GEO de-interl eaved 102, 400 51, 259 49, 844 49, 638 49, 726
BOOK1 768, 771 209,167 202,428 205,165 197,181 195, 338
BOCK1 ci phered 768, 771 219,503 213,548 207,853 212,792

Table 6. Model confusion test results on top compressors. DEC-split i s sown for reference

It should be noted that if we substitute the aopped PIC into the Calgary corpus results in table 4, then the top five
compressors from best to worst becomes DEC, PPMN, PAQ1, PEMONSTR, and RK. AlthoughRK and
PPMONSTR outperform PAQ1 on most files, PAQL1 has the alvantage that it can make better use of crossfile
statistics in producing a solid archive.

8. The Compression-Memory Tradeoff

From table 4 we can seethat the best compresson programs tend to use the most memory. The modular design of
PAQL1 allows us to easily combine models and adjust the memory usage by ead oneto optimize mmpresson for
some data set. PAQL combines two very general models, the n-gram model and long string matching model, with
two spedalized models, one for English text and one for fixed length records, common in binary data.

Table 7 shows the dfeds of removing models or deaeasing their avail able memory on compresson of the Calgary
corpus. For the n-gram and word models, the memory was adjusted by changing the size of the hash table. The
other models were simply added or removed. The word model generally improves the ampresson of text files,
while expanding other files very dightly. The fixed length record model improves compresson mostly for GEO, and
to aleser extent PIC and OBJ2, while expanding other files very dightly. Even without the two spedalized models,



PAQL still achieves very good compresson, 731 KB on the mncaenated Calgary corpus, compared to 736KB for
the next best compressor, PPMONSTR.

n-gram string word fixed Si ze Ti me
- - - - 3,141, 622

1M - - - 843, 819 46. 3
8 MB - - - 768, 463 45.9
16 B - - - 758, 456 45. 6
32 B - - - 751, 734 45. 3
32 MB 7 MB - - 731, 637 48.5
32 MB 7 MB 8 MB - 723,092 62.1
16 MB 7 MB 8 MB 68 KB 720, 310 71.2
32 MB 7 MB 4 MB 68 KB 717,766 68.0
32 MB 7 MB 8 MB 68 KB 716, 704 68.1 (PAQL)

Table 7. The effeds of removing model components or reducing memory on compresson of the concatenated
Calgary corpus.

9. Conclusion

PAQL demonstrates that nonstationary bit-level modelingis comparable in speed, memory, and compresson to the
best PPM and BWT implementations. All of these dgorithms exploit avery general (but not universal) redundancy
found in many types of data -- that some n-grams are more common than others. What they don't exploit -- and
PAQ1 dces -- isthat these cmmmon n-grams tend to cluster together. This comes at a ast, becaise optimizing any
compresson agorithm for one type of data hurts compresson for other types. PAQL gets very good compresson on
mixed data, but at the st of expanding homogeneous data, including random data. It isasif the model keegps
looking for patterns where none exist.

PAQL1 uses a nonstationary n-gram model, which is a cmpromise between a stationary model where dl events are
equally significant, and an inverse temporal model where the significance of an event isinversely propartional to the
time sinceit occurred. The latter is motivated by studies of leaningin animals. The models are weighted by n?,
which we agued is equal to the predictive power of an n-gram divided by its frequency if we asaime that the n-
grams themselves are generated by an inverse temporal process Finaly, the models are weighted by 1/p(0)p(1)
because probabiliti esnea 0 or 1 are more useful than probabiliti es nea 1/2.

The modular design of PAQ1 makesit easy to add spedalized models for certain types of data, such as ASCII text or
fixed length records. We found experimental evidencethat RK contains $milar models, as well as one for images of
exadly the same width as PIC from the Calgary corpus. We could add more models to improve compresson on
standard benchmarks even further, but thereislittl e point in doing so. The DEC program ill ustrates the extent to
which this approach can be taken.

| believe that advances in compresgon will comein two aress. First isthe aldition of more memory. Seoond, it will
come from a better understanding of spedalized types of data. For datathat is meaningful to humans, such as text or
movies, the problem is closely related to artificial intelligence. Inlosgy multimedia compresson, the problemisto
discard what we canot seeor hea, and kegp what we can, which implies a degy understanding of the processof
human perception. Losdesstext compresgon isaproblem in natural language processng. To seethis, imagine the
problem of compressng the following hypotheticd dialog from the Turing test for Al (Turing, 1950:

Q Please wite ne a sonnet on the subject of the Forth Bridge.
A: Count me out on this one. | never could wite poetry.

Q Add 34957 to 70764.

A:. (Pause about 30 seconds and then give as answer) 105621.

Q Do you play chess?



A Yes.

Q | have K at ny K1, and no other pieces. You have only K at K6 and R at R1.
It is your nove. \What do you play?

A: (After a pause of 15 seconds) R-R8 mate.

Since aithmetic encodingis known to be optimal, compresson quality depends entirely on knowing the probability
p(s) for any given input string s whatever the source, for example, human communication. Thisimpliesthat for any
given question g and answer a, we could cdculate p(alq) = p(ga)/p(q). Knowing p(s), we auld therefore generate
answers as above with distribution p(alqg). Since humans also produce axswers with distribution p(ajq) (by our
original asauumption about the source), the program’s answers would be indistinguishable from that of a human, and
the program would passthe Turing test.

Of course we have alongway to go before data mmpresson programs can learn from a corpus of text to play chess
or simulate human errorsin arithmetic, but there ae some thingswe car do. For instance, Rosenfeld (1996 has
demonstrated improved compresson (adually word perplexity, afunction of entropy) in models that learn semantic
asciations, such as sonnet and poetry, based on their close proximity in runring text, so that the occurrence of
either word predictsthe other. (Bellegarda . al., 1996 has gone further by exploiti ng the transitive property of
semantics (using aprocesscal ed latent semantic analysis, esentially a 3-layer linea neural network) to lean such
asociations even when the words do not appea nea ead other, but both appea nea other words such as rhyme.

PAQ1' sword higram model uses afixed lexicd model to find words, which it defines as a sequence of letters from a
to z. Thiswould not work in foreign languages that use extended charader sets, or in langueges that ladk spaces
between words, such as Chinese. The problem also occursin Finnish verbs, German nouns, and with English
suffixes auch as-s, -ing, -ed, etc. However, Hutchens and Alder (1997 demonstrated that lexicd knowledge is
leanable from an n-gram model: the conditional entropy of charaders outside the boundary of aword is higher than
for charaders within the boundary. Esentialy, thisis becaise words have ahigher frequency than non-words, and
becaise words cannot overlap.

PAQL1 source mde was released on Jan. 7, 2002under the GNU general public license, and is avail able &
http://cs.fit.edu/ ~mmahoney/ conpressi on/ . Futureversionswill useincompatible achive formats,
thusthey will have different names: PAQ2, PAQ3, etc. | anticipate that future versions will i ncorporate some of the
language modeling ideas discussed here. One of my goalsisto bridge the “lexicd boundary” between the word-
level semantic and syntadic models used by the statistica NLP community (primarily speed recognition) and the n-
gram charader models of the data cmmpresson community.
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