
Fast Text Compression with Neural Networks
Matthew V. Mahoney

Florida Institute of Technology
150 W. University Blvd.

Melbourne FL 32901
mmahoney@cs.fit.edu

Abstract
Neural networks have the potential to extend data com-
pression algorithms beyond the character level n-gram
models now in use, but have usuall y been avoided because
they are too slow to be practical. We introduce a model that
produces better compression than popular Limpel-Ziv
compressors (zip, gzip, compress), and is competiti ve in
time, space, and compression ratio with PPM and Burrows-
Wheeler algorithms, currently the best known. The com-
pressor, a bit-level predictive arithmetic encoder using a 2
layer, 4 × 106 by 1 network, is fast (about 104 charac-
ters/second) because only 4-5 connections are simultane-
ously active and because it uses a variable learning rate
optimized for one-pass training.

Keywords: Neural networks, Text compression, Data
compression, On-line training/learning, Maximum entropy,
Prediction, Efficiency.

1. Introduction
One of the motivations for using neural networks for data
compression is that they excel in complex pattern recog-
nition. Standard compression algorithms, such as Limpel-
Ziv or PPM (Bell , Witten, and Cleary, 1989) or Burrows-
Wheeler (Burrows and Wheeler, 1994) are based on sim-
ple n-gram models: they exploit the nonuniform distribu-
tion of text sequences found in most data. For example,
the character trigram the is more common than qzv in
English text, so the former would be assigned a shorter
code. However, there are other types of learnable redun-
dancies that cannot be modeled using n-gram frequencies.
For example, Rosenfeld (1996) combined word trigrams
with semantic associations, such as “ fire...heat” , where
certain pairs of words are li kely to occur near each other
but the intervening text may vary, to achieve an unsur-
passed word perplexity of 68, or about 1.23 bits per char-
acter (bpc)1, on the 38 milli on word Wall Street Journal

1 Rosenfeld’s perplexity of 68 is equivalent to an entropy of log2

68 = 6.09 bits per word, or 1.11 bpc at 5.5 characters per word
(including spaces). In addition, we assume that the 2.2% of the
words outside a 20,000 word vocabulary that Rosenfeld modeled
as a single token could be encoded at 3 bits per 10 character
word using a reasonable n-gram character model, adding 3 x
0.022 x 10/5.5 = 0.12 bpc. The 20K dictionary would add neg-
ligible space.

corpus. Connectionist neural models (Feldman and Bal-
lard, 1982) are well suited for modeling language con-
straints such as these, e.g. by using neurons to represent
letters and words, and connections to model associations.

We follow the approach of Schmidhuber and Heil
(1996) of using neural network prediction followed by
arithmetic encoding, a model that they derived from PPM
(prediction by partial match), developed by Bell , Witten,
and Cleary. In a predictive encoder, a predictor, observing
a stream of input characters, assigns a probabilit y distri-
bution for the next character. An arithmetic encoder,
starting with the real interval [0, 1], repeatedly subdivides
this range for each character in proportion to the predicted
distribution, with the largest subintervals for the most
li kely characters. Then after the character is observed, the
corresponding subinterval becomes the new (smaller)
range. The encoder output is the shortest number that can
be expressed as a binary fraction within the resulting final
range. Since arithmetic encoding is optimal within one bit
of the Shannon limit of log2 1/P(x) bits (where P(x) is the
probabilit y of the entire input string, x), compression ratio
depends almost entirely on the predictor.

Schmidhuber and Heil replaced the PPM predictor
(which matches the context of the last few characters to
previous occurrences in the input) with a 3-layer neural
network trained by back propagation to assign character
probabiliti es when given the context as input. Unfortu-
nately the algorithm was too slow to make it practical to
test on standard benchmarks, such as the Calgary corpus
(Bell , Witten, and Cleary, 1989). Training on a 10K to
20K text file required days of computation on an HP 700
workstation, and the prediction phase (which compressed
English and German newspaper articles to 2.94 bpc) ran
1000 times slower than standard methods. In contrast, the
2-layer network we describe, which learns and predicts in
a single pass, will compress a similar quantity of text in
about 2 seconds on a 100 MHz 80486 (typicall y achieving
better compression).

In section 2, we describe a neural network that predicts
the input one bit at a time, and show that it is equivalent
to the maximum-entropy (Rosenfeld, 1996; Manning and
Schütze, 1999, pp. 589 ff.) approach to combining prob-

 Copyright © 2000, American Association for Artificial Intelli gence
(www.aaai.org). All rights reserved.

abili stic constraints. In (3), we derive an optimal one-pass
learning rate for independent, stationary inputs, and ex-
tend the model to the more general case. In (4), we com-
pare this model to a number of variations and find ex-
perimentall y that it is the best. In (5), we find experimen-
tall y that neural network compression performs almost as
well as PPM and Burrows-Wheeler (current the best
known character models) in both speed and compression
ratio, and better (but slower) than popular Limpel-Ziv
models such as UNIX compress, zip, and gzip. In (6) we
describe the implementation.

2. A Maximum Entropy Neural Network
In a predictive encoder, we are interested in predicting the
next input symbol y, given a feature vector x = x1, x2,...,
xM, where each xi is a 1 if a particular context is present in
the input history, and 0 otherwise. For instance, we may
wish to find P(y = e|th), the probabilit y that the next sym-
bol is e in context th, i.e. xth = 1 and all other xi = 0.

In our implementation, we predict one bit at a time, so y
is either 0 or 1. We can estimate P(y = 1|xi) ≈ N(1)/N, for
each context xi, by counting the number of times, N(1),
that y = 1 occurs in the N occurrences of that context. In
an n-gram character model (n about 4 to 6), there would
be one active input (xi = 1) for each of the n contexts of
length 0 to n - 1. (In practice, the length 0 context was
not used).

The set of known probabiliti es P(y|xi) does not com-
pletely constrain the joint distribution P(y|x) that we are
interested in finding. According to the maximum entropy
principle, the most likely distribution for P(y|x) is the one
with the highest entropy, and furthermore it must have the
form (using the notation of Manning and Schütze)

P(x, y) = 1/Z Πi αi
f
i
(x, y) (1)

where fi(x, y) is an arbitrary “ feature” function, equal to xi

in our case, αi are parameters to be determined, and Z is a
normalization constant to make the probabiliti es sum to 1.
The αi are found by generalized iterative scaling (GIS),
which is guaranteed to converge to the unique solution.
Essentiall y, GIS adjusts the αi until P(x, y) is consistent
with the known probabiliti es P(xi, y) found by counting n-
grams.

Taking the log of (1), and using the fact that P(y|x) =
P(x, y)/P(x), we can rewrite (1) in the following form:

P(y|x) = 1/Z’ exp(Σi wixi) (2)

where wi = log αi. Setting Z’ so that P(y = 0|x) + P(y =
1|x) = 1, we obtain

P(y|x) = g(Σi wixi), where (3)

g(x) = 1/(1 + e-x) (4)
which is a 2-layer neural network with M input units xi

and a single output P(y = 1|x).

Analogous to GIS, we train the network to satisfy the
known probabiliti es P(y|xi) by iteratively adjusting the
weights wi to minimize the error, E = y - P(y), the differ-
ence between the expected output y (the next bit to be ob-
served), and the prediction P(y).

wi = wi + ∆wi (5)

∆wi = ηxiE (6)

where η is the learning rate, usually set ad hoc to around
0.1 to 0.5. This is fine for batch mode training, but for on-
line compression, where each training sample is presented
only once, we need to choose η more carefully.

3. Maximum Entropy On-line Learning
We now wish to find the learning rate, η, required to
maintain the maximum-entropy solution after each up-
date. We consider first the case of independent inputs
(P(xi, xj) = P(xi)P(xj)), and a stationary source (P(y|xi) does
not vary over time). In this case, we could just compute
the weights directly. If we let xi = 1 and all other inputs be
0, then we have:

p ≡ P(y|xi = 1) = g(wi) (7)

wi = g-1(p) = ln p/(1 - p) ≈ ln N(1)/N(0) (8)
where N(1) and N(0) are the number of times y has been
observed to be a 1 or 0 respectively in context xi. (The
approximation holds when the N(•) are large. We will
return to the problem of zero counts later).

If we observe y = 1, then wi is updated as follows:

∆wi = ln (N(1)+1)/N(0) - ln N(1)/N(0) ≈ 1/N(1) (9)
and if y = 0,

∆wi = ln N(1)/(N(0)+1) - ln N(1)/N(0) ≈ -1/N(0) (10)

We can now find η such that the learning equation ∆wi =
ηxiE (which converges whether or not the inputs are inde-
pendent) is optimal for independent inputs. For the case xi

= 1,

∆wi = ∆wiE/E = ηE (11)

η = ∆wi/E (12)
If y = 1, then

E = 1 - p = 1 - N(1)/N = N(0)/N (13)

η = ∆wi/E = 1/EN(1) = N/N(0)N(1) = 1/σ2 (14)
And if y = 0, then

E = -p = -N(1)/N (15)

η = ∆wi/E = -1/EN(0) = N/N(0)N(1) = 1/σ2 (16)

where N = N(0) + N(1), and σ2 = N(0)N(1)/N = Np(1 - p)
is the variance of the training data.

If the inputs are correlated, then using the output error
to adjust the weights still allows the network to converge,
but not at the optimal rate. In the extreme case, if there are
m perfectly correlated copies of xi, then the total effect will

be equal to a single input with weight mwi. The optimal
learning rate will be η = 1/mσ2 in this case. Since the cor-
relation cannot be determined locall y, we introduce a pa-
rameter ηL, called the long term learning rate, where 1/m
≤ ηL ≤ 1. The weight update equation then becomes

∆wi = ηLE/σ2 (17)
In addition, we have assumed that the data is stationary,
that p = P(y|xi) does not change over time. The following
bit stream fragment of y for one particular context xi sug-
gests that a better model is one where p periodicall y varies
between 0 and 1 over time. The input is alice30.txt,
Alice in Wonderland by Lewis Carroll , from Project
Gutenberg. The context xi = 1 for 256 particular values
(selected by a hash function) of the last 24 bits of input.

000000000000000100000000000000000000111111110
000000000000000000000001000000000000011111111
111111111111111100000000000000000000000001000
000000000000001111110100010100010100010100010
100010100010100010100010100010100010100010100
010100010100010100010100011000000000000000000
000
000000000000000000000000000000000001111111111
000000000000000000000000100000000000000000000
011111111111111111110000010000000100000100000
001000000000000000001000000000000000100000100
000001000001000000010000000000000000010000000

If the probabilit y were fixed, we would not expect to find
long strings of both 0’s and 1’s. It is clear from this ex-
ample that the last few bits of input history is a better
predictor of the next bit than simply weighting all of the
bits equally, as ηL does. The solution is to impose a lower
bound, ηS, on the learning rate, a parameter that we call
the short term learning rate. This has the effect of
weighting the last 1/ηS bits more heavily.

∆wi = (ηS + ηL/σ2)E (18)

Finall y, recall that σ2 = N(0)N(1)/N = Np(1 - p), which
means that the learning rate is undefined when either
count is 0, or equivalently, when p = N(1)/N is 0 or 1. A
common solution is to add a small offset, d, to each of the
counts N(0) and N(1). For the case d = 1, we have
Laplace’s law of succession, which is optimal when all
values of p are a priori equally li kely (Witten and Bell ,
1991). Cleary and Teahan (1995) found, however, that the
optimal value of d depends on the data source. For text,
their experiments suggest a value of d ≈ 0.1, though we
found that 0.5 works well. Thus, in (18), we use

σ2 = (N+2d) / (N(0)+d)(N(1)+d) (19)

4. Alternative Approaches
So far we have only shown how to optimally predict sta-
tionary data with independent features, and suggested ex-
tensions to the more general case. To test these, a large
number of alternatives (about 20) were tested experimen-

tall y. Space prevents us from describing all but three of
the most promising approaches, none of which improved
over the methods described.

For all of the tests, the input was Alice in Wonderland,
152,141 bytes. A neural network was constructed with
258K input units, divided into four sets of contexts, li sted
below. Exactly one input from each set was active at any
time. The context sets were:
• The last 8 bits of input, plus the position (0-7) within

the current byte, for a total of 211 contexts. Thus, unit
xi is active if the last 8 bits of input, concatenated
with the 3-bit number representing the bit position 0-
7, is exactly equal to the 11-bit number i.

• The last 16 bits of input (216 contexts).
• The last 24 bits of input, hashed to a 16 bit value (216

contexts. The hash function is a polynomial function
of the input bits, modulo 216, chosen mainly for
speed).

• The last 32 bits of input, hashed to a 17 bit value (217

contexts).
These contexts are similar to the ones used by PPM com-
pressors, which typicall y use the last 1, 2, 3, and 4 charac-
ters to predict the next character.

The parameters of (18) and (19) where hand tuned to ηL

= 0.5, ηS = 0.08, and d = 0.5, to optimize compression,
obtaining a baseline of 2.301 bpc. This compares to 2.466
bpc for conventional training (ηS tuned to 0.375 with ηL

fixed at 0), 2.368 bpc for the assumption of stationary,
independent inputs, (ηL = 1, ηS = 0), and 2.330 bpc allow-
ing for some correlation between inputs, (ηL tuned to 0.6-
0.7 with ηS fixed at 0).

4.1. Adaptive learning rate
Of the many alternatives tested, the most successful ap-
proach was to adjust the learning rate dynamicall y for
each connection. The idea is to observe the last two errors
when xi = 1, and adjust the learning rate in the direction
that would have reduced the second error.

∆wi = Eηi

ηi := (AEEi + 1)ηi

Ei = E
where E and Ei are the current and previous errors, and A
< 1 is a parameter that determines how rapidly the learn-
ing rate is adjusted. This works fairly well . After hand
tuning, compression of 2.344 bpc (0.043 over baseline)
was obtained with A = 0.5, and ηi initially 0.5.

4.2. Rate decay
The second best alternative tried was to take a more direct
approach to decreasing the learning rate each time xi is
active, which (18) does indirectly:

∆wi = ηiE, where

ηi is updated by ηi := Aηi + B.
The result was 2.380 bpc (0.079 over baseline), only a
littl e better than the best fixed rate (2.466 bpc). This was
obtained by tuning A to 1/2, B to 1/8, and ηi to an initial
value of 1.5. With these parameters, ηi converges to B/(1 -
A) = 1/4.

4.3. PPM and interpolation
In 4.1 and 4.2, we experimented with different learning
rates. Now we experiment with different methods of com-
bining the known probabiliti es P(y|xi). The most common
alternatives to maximum entropy are linear interpolation
and PPM. Of the m = 4 active contexts with lengths 11,
16, 24, and 32 bits, PPM simply selects the longest one
which occurred at least once before (N > 0), and estimates
P(y) = (N(1) + d)/(N + 2d). In contrast to larger alphabets,
binary PPM performs surprisingly poorly:

d bpc
0.1 3.930
0.25 3.798
0.5 3.800
1 (Laplacian) 3.915

Table 1. Compression of Alice in Wonderland using
binary PPM.

Binary PPM compression was much worse than fixed rate
learning (2.445 bpc), and worse than the 3.123 bpc ob-
tained by simply averaging the four probabiliti es (with d =
0.5). It was thought that weighted averaging, with weights
proportional to set size (i.e. 211, 216, 216, 217) to favor the
longer and presumably more reliable contexts, should im-
prove compression over simple averaging. Instead, com-
pression worsened to 3.182 bpc.

5. Experimental Evaluation
The small (258K input) neural network of section 4, and a
larger network with 222 (about 4 × 106) inputs were com-
pared to seven popular and top rated compression pro-
grams. Compression ratios and times for Alice in Wonder-
land and ratios for book1 from the Calgary corpus
(Hardy’s Far from the Madding Crowd, 768,771 bytes) are
shown below. Parameters for both neural networks were
hand tuned only for Alice in Wonderland, and then tested
on book1 without further tuning. Tests were performed on
a 100 MHz 80486 with 64 MB of RAM under Windows
95.

Program Ver. Year TypeAlice
bpc

Comp
(sec)

De-
comp

Book1
bpc

compress 4.3d 1990 LZ 3.2701 0.5 3.486
pkzip 2.04e 1993 LZ 2.8846 <0.5 3.288
gzip -9 1.2.4 1993 LZ 2.8487 0.5 3.250
szip -b41 -o01.05Xf 1998 BW 2.2399 6 2.345
ha a2 0.98 1993 PPM2.17116 16 2.453
boa -m15 0.58b 1998 PPM2.06133 34 2.204
rkive -mt3 1.91b11998 PPM2.055134 117 2.120
neural smallP5 1999 NN 2.30124 24 2.508
neural largeP6 1999 NN 2.12926 26 2.283

Table 2. Compression ratios and times for Alice in
Wonderland and ratios for book12

The large model uses 5 sets of inputs. In each set, the
index i of the active input xi is a 22-bit hash of the last n
(1 to 5) characters, the last 0 to 7 bits of the current char-
acter, and the position (0 to 7) within the current charac-
ter. For n = 1, there are only 64K possible values. The
other four sets (n = 2 through 5) overlap each other in a
space of size 222 - 64K = 4,128,768. The parameters were
hand tuned on Alice in Wonderland to ηL = 0.35 and ηS =
(0.08, 0.15, 0.2, 0.2, 0.2) for the context sets for n = (1, 2,
3, 4, 5), with d = 0.5.

The seven compression program options were set for
maximum text compression. UNIX compress, pkzip, and
gzip are popular Limpel-Ziv compressors because of their
speed, and in spite of their poor compression. They work
by replacing reoccurring n-grams with a pointer to the
previous occurrence.

Gilchrist (1999) rated boa (Sutton, 1998) as giving the
best compression from among hundreds of archivers on
the Calgary corpus, and rkive (Taylor, 1998) as the best on
the text portion as of Sept. 1998. Both are PPM programs,
which predict characters based on n-gram counts. Bell
(1998) rated szip (Schindler, 1998), a Burrows-Wheeler
encoder, the best on the large (2-4 MB) text portion of the
Canterbury corpus. It sorts the input stream by context,
then uses an adaptive 1-gram compressor on the permuted
stream. ha (Hirvola, 1993) is an early PPM encoder, rated
the best compressor in 1994 (Data Compression FAQ,
1998).

The large model compressed to within 0.074 bpc of
rkive, the best compressor on Alice in Wonderland, and
0.719 bpc better than gzip, the best LZ compressor. With
no further tuning, it compressed within 0.163 bpc of rkive
on book1, and 0.967 bpc better than gzip.

In another test, the large model was compared with the
top-rated boa on the Calgary corpus of 14 text and binary

2 rkive ran out of memory using the -mt3 option on book1, so -
mt2 was used. The options -mt0 through -mt3 produce succes-
sively better compression at the cost of memory.

fil es, again with no further tuning. Both programs use
about the same amount of memory (15 MB for boa, 16
MB for the neural network), and both compress in “solid”
mode (boa option -s), treating the input as a single file.
The result, using the same file order, was 1.904 bpc for
boa in 720 seconds, and 2.142 bpc for the neural network
in 537 seconds.

6. Implementation
Both the large and small neural networks use 4 bytes of
memory for each input. The weight wi is represented as a
16 bit signed number with a 10 bit fraction, i.e., ±32 with
precision 0.001. The counts N(0) and N(1) are represented
as 8 bit unsigned numbers with a 1 bit fraction, i.e. 0 to
127.5 (integers 0 to 255 in the large model). To prevent
overflow, both counts are divided by 2 whenever either
count exceeds 125 (250 in the large model). This has the
same effect as a small ηS, of favoring recent training data.
In fact, when ηS = 0, rolli ng over the counts at around 25
or 30 instead of 125 improved the compression.

The arithmetic encoder stores the current range as a
pair of unsigned 32 bit numbers, writing out the leading
bytes whenever they match. This, and using a 16 bit un-
signed probabilit y, results in a slight loss of eff iciency,
experimentally less than 0.0001 bpc.

Additional optimization techniques include the exclu-
sive use of integer arithmetic, using bit shifts in place of
division when possible, using table lookup to compute
g(•), and representing the weights as an array of structures
(instead of a structure of arrays) to optimize cache usage.
The programs were written in C++.

7. Conclusions
It was shown that it is practical to use neural networks for
text compression, an application requiring high speed.
Among neural models, the best one found combines long
and short term learning rates to achieve a balance between
using the entire input history and favoring the most recent
data to adapt to changing statistics..

Although we optimized the neural network to predict
text, it was found to give good performance on a wide va-
riety of data types. It would probably be better to have the
program automaticall y adjust ηS and ηL, rather than set-
ting them ad hoc, but this would just introduce another
parameter to determine the adjustment rate. The problem
of ad hoc parameters seems to be unavoidable.

Research is ongoing, and it is expected that improved
compressors will be found. We have yet to investigate
models that exploit syntactic or semantic constraints, our
reason for using neural networks in the first place. Im-
proved models (C++ source code and Windows 95 execu-

tables) will be posted to http://cs.fit.edu/~mmahoney/-
compression as they become available.

Acknowledgments
I would li ke to thank Dr. Phil Chan for helpful comments
on this paper.

References
Bell , Timothy, Witten, Ian H., and Cleary, John G. 1989.

Modeling for Text Compression, ACM Computing Sur-
veys 21(4): 557-591.

Bell , Timothy. 1998. Canterbury Corpus,
http://corpus.canterbury.ac.nz

Burrows, M., and Wheeler, D. J. 1994. A Block-Sorting
Lossless Data Compression Algorithm. Digital Systems
Research Center, http://gatekeeper.dec.com/pub/DEC/-
SRC/research-reports/abstracts/src-rr-124.html

Cleary, John G., and Teahan, W. J. 1995. Experiments on
the Zero Frequency Problem. Proc. Data Compression
Conference: 480.

Data Compression FAQ 1998. http://www.cs.ruu.nl/wais/-
html/na-dir/compression-faq/.html

Feldman, J. A., and Ballard, D. H. 1982. Connectionist
Models and their Properties, Cognitive Science 6: 205-
254

Gilchrist, Jeff, 1999. Archive Comparison Test,
http://act.by.net/act.html

Hirvola, H., 1993, ha 0.98, http://www.webwaves.com/-
arcers/msdos/ha098.zip

Manning, Christopher D., and Schütze, Hinrich, 1999,
Foundations of Statistical Natural Language Process-
ing. Cambridge Mass.: MIT Press.

Rosenfeld, Ronald 1996. A Maximum Entropy Approach
to Adaptive Statistical Language Modeling. Computer,
Speech and Language: 10. See also
http://www.cs.cmu.edu/afs/cs/user/roni/WWW/me-csl-
revised.ps

Schindler, Michael, 1998. szip homepage,
http://www.compressconsult.com/szip/

Schmidhuber, Jürgen, and Heil , Stefan 1996, Sequential
Neural Text Compression, IEEE Trans. on Neural Net-
works 7(1): 142-146.

Sutton, Ian, 1998, boa 0.58 beta, ftp://ftp.cdrom.com/pub/-
sac/pack/boa058.zip

Taylor, Malcolm, RKIVE v1.91 beta 1, 1998,
http://www.geocities.com/SiliconValley/Peaks/9463/-
rkive.html

Witten, Ian H., and Timothy C. Bell , 1991, The Zero-
Frequency Problem: Estimating the Probabiliti es of
Novel Events in Adaptive Text Compression, IEEE
Trans. on Information Theory, 37(4): 1085-1094

