
Data to Knowledge: Understanding Dynamic 
Medical Images

Computer Science (CS) is the new language of science as Mathematics was until 

the Twentieth Century. CS generalizes mathematics toward being more versatile. 

In this talk we will focus on some problems in bio-medical science and discuss 

how our group views the challenges and how we try to address them 

computationally.

Tomography is the technology of combining data from multiple views (say, 2D 

camera snapshots) to create a comprehensive image (say, in 3D). In medicine 

tomography is used to gather knowledge about target organs or physiology 

inside patients without any probing surgery. In vivo molecular imaging, or gene 

expression analysis in real time, is a promised goal of functional imaging. 

However, it involves time-varying signals coming from inside the body. My talk is 

on some of the projects on nuclear imaging and fluorescent imaging data with 

different types of dynamics in order to elicit bio-medical information.

Debasis Mitra is a Professor in the Department of Computer Science at Florida 

Institute of Technology in Melbourne. His current interest is in Imaging and Data 

Sciences, specially in medical imaging and molecular biology. In the past he has 

worked on Artificial Intelligence and Mathematical Physics.
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Tomography: Non-invasive Probing of 

Human Body
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Cardiac reversible ischemia: stressed(A), rest(B)
http://www.aipes-eeig.org/white-paper-spect-spect-ct.html

Views from a rotating camera: Sinogram

Computed 3D Reconstructed Image



Tomography: Non-invasive Probing of 
Human Body
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Forward Problem: 
This is what the imaging system does

P = S.V

P: Camera Views  - input
S: Camera model / System Matrix - computed
V: Target object - unknown

Inverse Problem: 
This is what a reconstruction algorithm does

V = S-1.P



Types of Imaging

• Anatomical Imaging
o Where is some organ located?

o Where is the tumor located?

o What is the bone density on spine?

o Example: 

• Absorption of X-ray: Computed Tomography (CT)

• Functional Imaging
o Where is the targeted physiological function taking place?

o What is the strength of that function?

o How are the nerve cells functioning on heart muscles?

o Example: 

• Concentration of probing molecules, which emits gamma rays: 

Emission Tomography (SPECT and PET)
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Emission Tomography:
Functional Imaging
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Source: ME Phelps, PNAS, 97(16)  9226–9233, 2000



PET: Positron Emission Tomography

• Positron annihilates with electron 

 two gamma photons each at 511 keV leave at180

• Coincidence detection (“electronic collimation”)
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SPECT: Gamma Emission Tomography

(Single Photon Emission Computed Tomography)

-ray detectors

100-200 keV

collimators

Resolution

Sensitivity
Acquisition 
system

4/15/2016 8Moffitt Cancer Center



Iterative Reconstruction
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https://str.llnl.gov/str/JulAug01/Martz.html

S

V’’
P’=S.V’’   FORWARD MODEL

PP – P’

V’’

V’=S-1.P’   INVERSE PROBLEM

Input

Output estimated image
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• Dynamic Imaging: 
Target Image not stationery during scan

o e.g.  Patient moved

• Dynamic Functional Imaging:
As the target “function” is taking place: 

• concentration is changing
o e.g. nerve cells are picking up norepinephrine

Dynamic Imaging



Dynamic Imaging: PET
Project 1

3D x t
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Dynamic Imaging: PET
Project 1
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• Time-lapsed Reconstructed 
3D images, a slice through 
human brain                   

• Tracer concentration is 
changing with time       

PET:    views from all angles available at all instances.

PIB tracer binding on Alzheimer’s studies



Dimensions of the Problem

• V = 64x64x64 voxels => 262,000 => x4 bytes => 8 Mb

• T = 35 snapshots or views  =>  8 Mb x 35   => 280 Mb

• F = 4 target functions 
o upstream and downstream blood, 

o reference specific tracer binding, 

o non-specific binding
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Dynamic PET: Alzheimer’s studies
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Boutchko R, Mitra D, Baker S, Jagust W, and Gullberg GT. (April 2015) “Clustering Initiated Factor Analysis (CIFA) Application for 

Tissue Classification in Dynamic Brain PET.” Journal of Cerebral Blood Flow & Metabolism – Nature, doi:10.1038/jcbfm.2015.69.

Input: 4D images of possible Alzheimer’s patient

Output: Detect affected tissues based on their tracer dynamics

CIFA: Cluster-Initialized Factor Analysis



CIFA Algorithm
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Problem: Recognize 3 tissue types by tracer kinetics
Carotid artery, Normal tissue, Alzheimer's affected tissue (PIB attached to beta-amyloid);
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f: Time basis functions
C: Coefficients of time  

basis functions
k: voxel index
J: Number of 

time basis functions.

 tionRegularizamin
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,
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Non-negative matrix factorization (NNMF): 
Alternating optimization for C and f

Seung HS, and Lee DD. (1999) “Learning the parts of objects by non-negative factorization.” Nature.
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CIFA is Cluster-initialized Factor Analysis

NNMF is very sensitive to initialization:
Garbage in garbage out!

R-clustering to initialize NNMF
R-clustering = Representative Clustering

Just find out J number of representatives in data

Input:    {V} = N time series (TS) Vn of length K each, the elements are denoted as Vn
k

Output: P TS Cp
k, each representing a cluster

1. Find the ensemble average MA of all Vn;
// the first cluster is farthest from average
2. Find a fixed number J of TS in {V} that are furthest from MA , denote those as set {F1}; 
3. C1 = average of {F1};
4. For p =2 through P
5.     Find a fixed number J of TS in {V} that are furthest from all Cl

’ l  {1,P-1},
denote those as set {Fp};

6.     C p = average TS of {Fp};  // end for;
// refine clusters to be furthest from each other:
7. Repeat the loop 4-6, only this time the set {Fp} denotes J TS that are furthest away from all Cl

’ l  {{1,P} excluding p}.



Results from CIFA on Alzheimer’s studies
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Output 1: Time-activity curves (or f) for: 
i) Carotid artery, ii) Veins, iii) Normal tissue, and 

iv) Alzheimer’s affected tissue (PIB attached to 
β-amyloid)

Output 2: 3D views of Corresponding segments
(coefficients C)

R-clustering on raw data



Results from CIFA on Alzheimer’s studies
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Output 1: Time-activity curves  

3D view of above tissues

Output 2: Corresponding segments

Question: Recognize 3 tissue types by tracer kinetics
i) Carotid artery and vein, ii) Normal tissue, 

iii) Alzheimer's affected tissue (PIB attached to beta-amyloid);



Dynamic Imaging: SPECT
Project 2

2D x θ x t

Moffitt Cancer Center 194/15/2016
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blood pool

heart muscle 
(myocardium)

other organs
(E.g., liver)

Dynamic Data with SPECT

Time activity curves (TACs)

blood

heart

liver

Local tracer exchange (kinetic) 
rates –

important diagnostic parameters



Dynamic Imaging: SPECT
Project 2
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First Rotation Sinogram
Immediately after injection Only two projections for each time point: 

more difficult than PET
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Dynamic Vs. Static Projections
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Dynamic SinogramStatic Sinogram



SPECT Dynamic Imaging- Challenges

• Ill-posed Problem

• less time for data acquisition on each view

• Low counts – high noise

• Underdetermined Problem

• Fewer data in each time window after binning

• Inconsistent sinogram
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• Small animal imaging:
• Low resolution & motion



Dimensions of the Problem

• V = 64x64x64 voxels => 262,000 => x4 bytes => 8 Mb

• P = 64x64 pixels per view   x   120 views => 500,000

=>  x4 b  => 20 Mb

• System matrix, S = 8 x 20 => 160 Mb

• F, target functions = 3 to 4
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Dynamic SPECT: Task

• Goal: Estimation of tracer’s temporal distribution in 
the imaged tissues directly from inconsistent 
projections
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Input: Dynamic Sinogram
Output: Time Activity Curves (TACs)



Dynamic SPECT Model 
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 Dynamic SPECT 
is modeled by:

 4D volume is 
factored with J
time basis 
functions:

P: Sinogram
as function of time

S: System Matrix
V: 4D Imaged volume,

as function of time.
n: pixel index on the detector
k: voxel index on the volume

f: Time basis functions
C: Coefficients of time  

basis functions
J: Number of 

time basis functions.

Pn (t) = Sn,kVk (t)
k=1

K

å

Pn (t) = Sn,k

k=1

K

å Ck, j f j,t
j=1

J

å
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Static Image Reconstruction

• Optimize for V:
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Existing Dynamic SPECT Image Reconstruction Methods

• Spectral Methods:
o Select a set of representative time basis functions (Typically cubic b-

splines) and optimize for coefficients. 

Problem: what is the best set of basis functions?

• Factor Analysis of Dynamic Structures (FADS):
o Initialize and optimize both time basis functions and coefficients.  

Problem: what to initialize with?
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Our Approach: Spline-initialized FADS (SIFADS)

Enhancements:

o Combined those two types of optimization

o Imposed Data-driven Prior information as 

constraints in optimization

Consequence:

Reduced dependence on initialization
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Abdalah M, Boutchko R, Mitra D, and Gullberg GT.  “Reconstruction of 4-D Dynamic SPECT Images From Inconsistent 

Projections Using a Spline Initialized FADS Algorithm (SIFADS).” IEEE Transactions in Medical Imaging, 34(1): 216-228, 2015. 



Innovation 1– Hybrid Optimization

• Spline-Initialized FADS (SIFADS) algorithm
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1. Estimate initial TACs using spectral method

2. Using segmented static volume, average TACs of   

each segment

3. Initialize FADS with those averaged curves
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Innovation 2- Impose Prior information

• Reconstruction of later frames is segmented

• Segments are used to impose regularization 

functions:

1. An anisotropic total variation                      

2. Coefficients mix prevention                     j≠i

3. Curves’ smoothness constraint                  

o At each iteration of minimization step, a mask is created by taking 

the intersection of the segmented static volume and the 

estimated coefficients
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W(C) =|Cj ·Ci |1

1|)(|)( CATVC 

F( f ) =|Ñf |1

argmin SCf - p
2

w
+l1Q(c)+l2W(C)+ l3F( f ){ }

Spatial 
Regularization

Temporal 
Regularization

4/15/2016



Innovation 2– Masking

• ss
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• Weighting parameters are dynamically updated 

at each iteration by: 

• Where γ[k] is estimated by:
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2

w
+l1Q(c)+l2W(C)+ l3F( f ){ }

Innovation 3– Data-driven dynamic update of 
Regularization Parameters

I. Kazufumi et. al., 2011.



SIFADS Algorithm

4/15/2016 34

SIFADS Algorithm

MAP Algorithm
for coefficients estimation 

MAP Algorithm
for coefficients and factors estimation 
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Validation with Simulation
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Coefficients used for simulation 
(NCAT phantom) 

Generated projections with Poisson noise

Time Sec.

0 20 40

Moffitt Cancer Center



Results: Drawback of Pure Spline-method
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B-splines Spectral Ground truth 
for Simulation

argmin
c

SCf - p
2

w{ }
Drawback:

Very sensitive to initial time basis function
4/15/2016
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Initial Functions FADS Original TACs

argmin
c, f

SCf - p
2

w
+ Reg{ }

Ground truth

Drawback:
Very sensitive to 

initialization

Results: Drawback of Arbitrarily Initialized FADS-method



Spline vs. SIFADS results
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SIFADSInitial splines Spectral



FADS vs. SIFADS Results
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SIFADSInitial Functions FADS



Real Data: Rat heart

• Dynamic, pinhole SPECT study, rat’s heart

• Collimators:1.5×2 mm tungsten pinholes 

• GE VG3 Millennium Hawkeye camera

• Acquisition started with injection of 7 mCi 123I-MIBG 

• 30 rotations, 90 one-second views, per rotation

• Detector pixel: 4.42 mm, recon voxel 0.8 mm
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Results from the Rat Study

• s
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Estimated projections by forward 
projecting dynamic reconstruction:

Estimated rat TACs from the 
first inconsistent rotation:

Original projections:



Results from a Canine Study
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• GE Millennium VG3Hawkeye SPECT/CT camera

• Two detectors, H-mode, parallel LEHC collimators, 

4.42 mm pixel resolution

• 99mTc-teboroxine stress study of a canine subject

• 24 rotations, 72 one-second views per rotation



Summary on SIFADS

• TACs as a new biomarker?
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• Hybrid optimization procedure (SIFADS) developed

to reduce the initialization issue

• Several regularization functions proposed and

imposed using anatomical information.

• Segmentation according to TACs



Primal-Dual (PD) Optimization - to improve efficiency: 
Canine study
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MLEM Conjugate Gradient PD

Convergence:
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MLEM convergence

Chen S, Pan H, Abdalah M, Boutchko R, Mitra D, and Gullberg GT. (2014) 
“Image reconstruction with a primal–dual algorithm,” SNMMI, Seattle, Washington



Cell Tracking on Fluorescent Microscopy
Project 3

2D x t
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Cell Tracking on Fluorescent Microscopy
Project 3
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FRET: Fluorescence Resonance Energy Transfer
New Technology for quantifying gene expression in live single cells

“Imaging biochemistry inside cells”
TRENDS in Cell Biology, 11(5): 203-211, 2011
Wouters, Verveer and Bastiaens

Three channels for each Time-frame:
Donor emission (FD), Acceptor Emission (FA), D-to-A Excitation emission (FDA) 



Cell Tracking on Fluorescent Microscopy
Project 3
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Input: 
Frames of the time-lapsed 2D image 

from a confocal microscope

Output: 
Same frames after tracking 

by scale-space segmentation



Cell Tracking on Fluorescent Microscopy
Project 3
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Scale Space Algorithm: 
Handles varying sizes of cells

Problems: 
Live cells move in 3D – across the frame, 

in-out of focal plane;
cells also divide! 

How to track a cell from frame to frame?

Semi-solved (“threading”): 
Search around a cell in next frame for similar average intensity



Cell Tracking on Fluorescent Microscopy
Project 3
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Tracking a cell from frame to frame by threading algorithm

SPIE Medical Imaging Conference, February 2015, Orlando,

Debasis Mitra, Rostyslav Bouthcko, Judhajeet Ray, and Marit Nilsen-Hamilton

A sample cell’s average intensity variation over time-lapsed frames. 
Three colored curves represent three channels: 
Cy3 excitation-Cy3 emission, Cy5 excitation-Cy5 emission, and Cy3 excitation-Cy5 emission.



Rigid Motion in SPECT Projections
Project 4
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Motion

Motionless Dataset Motion-Corrupted Dataset

Conventional Perfusion studies with Static Imaging:
Step and shoot mode, consistent projection, but patient moves during scan



Corrections for motion with SinoCor
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Motion between projections:

Eiland D, Mitra D, Abdalah M, Butchko R, and Gullberg GT. (2012) 
“SinoCor: Inter-frame and Intra-frame motion correction tool,” 
Conf. Record IEEE Nuclear Science Symposium and Medical Imaging Conference, Anaheim, CA.



Future

• Improving Algorithm:
o Optimization (Primal-Dual)

o Parallelization (using High-performance Computing)

o Removing Manual Intervention: Automatic Segmentation for Masking 

o Better basis function (Spline-Wavelet)

o Motion compensation

• Rigid motion of patient (SinoCor)

• Beating heart (Blind deconvolution)

• Respiratory motion (Rank optimization)

• Multiple-modality data-fusion for better 

reconstruction in both
o Machine learning  (Cross-modality reconstruction with prior knowledge 

infusion across different modalities)

o Data management to keep track of metadata across modalities 

(Research Medical Imaging database: ReMI.lbl.gov)
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Imaging Beyond Medicine:
Problems with similar mathematics -

Linear Algebra, Statistics, Numerical Optimization, …

• Muon tomography:
cosmic ray-generated muon scattered from heavy metals

• Cosmology:
Structure of universe from telescopic observations

• Electron Microscopy:
3D view of a virus or molecule,  & in action

• Seismic:
Acoustic waves from earthquake or artificial source to 
study subsurface structure  & activities

Spread the cost of imaging research across multiple agencies



Quantifying nuclear threats with muon tomography algorithms
Kim Day

Faculty Advisor: Dr. Debasis Mitra, Dept. of Computer Science, Florida Institute of Technology

Abstract
The Florida Tech High Energy Physics Group A led 

by Dr. Marcus Hohlmann has been developing a 

prototype muon tomography station (MTS) for 

identifying shielded nuclear materials. The MTS 

typically requires days of data taking in order to 

reconstruct objects. Since waiting for days will not 

be an option in practical use, this study focused on 

developing algorithms that could work with small 

amounts of data for identifying suspect materials. 

Focus was put on finding “clear” areas that did not 

contain high density materials. The algorithm was 

able to identify a 2cm block of uranium in the 

prototype station within an hour’s worth of data.

Algorithm description
•The algorithm divides the volume inside the 

station into an array of voxels (3D pixels). 
Then, it counts the number of straight muon
tracks that pass through each voxel.

•Since muons will pass straight through clear 
areas without scattering, voxels that contain 
a high straight track count are more likely to 
be clear of nuclear material. 

•Scattered tracks were also used to show 
which voxels contained scattered points (less 
likely to be clear).

Conclusion
The clearing algorithm developed for this project was able 

to identify high density blocks and narrow down much of 

the search area using 1 hour of data. This is promising for 

practical use, although the algorithm still requires work on 

noise reduction and parallelization for increasing the 

analysis speed.

Motivation
• Millions of packages enter the US every day, but 

only a small percentage can be scanned without 
slowing down the process.

• Nuclear material smuggling can be easily done by 
using lead shielding to hide the radiation. 

• There is a need for a method that can see through 
lead shielding without being intrusive or time 
consuming.

Findings
• Tested on the “5 target” scenario: an arrangement of five 2cm 

blocks of different densities (figure 3).
• Able to see high density materials (Z >= 50) with 1 hour’s worth 

of data taking (6000 tracks, figure 4). 
• Taking data for 2-3 hours (12000/18000 tracks, figures 5-6) 

allowed for visualizing the shapes of the blocks.

About muon tomography
• Muon tomography is a 3D visualization method 

that uses naturally occurring muon showers to 
reconstruct objects.

• When a muon passes through a dense material, it 
will scatter slightly in its trajectory.

• A muon tomography station (MTS) can record the 
incoming and outgoing paths of all the muons
that pass through it.

• The point of scattering can be found by finding 
where the incoming and outgoing rays intersect.

• Analyzing the high-angle scattered points will 
show where the densest materials are.

• A prototype cubic foot detector has been built at 
Florida Tech (figure 1). 

Sources
US Customs and Border Protection cargo security
http://www.cbp.gov/border-security/ports-entry/cargo-
security
Los Alamos initial research paper on muon tomography
http://scienceandglobalsecurity.org/archive/sgs16morris.p
df

Figures 5 & 6: Output of the algorithm 

using 2 hours (left) & 3 hours (right) of 

data.

Figure 3 (left): The “5 target” 

arrangement of 2 cm blocks (lead, 

tungsten, tin, iron, and uranium).

Figure 4 (right): 2D output of the 

algorithm showing a horizontal slice 

through the center of the blocks after 1 

hour. Red = threat, green = clear, blue = 

unknown.Figure 1 (left): The Florida Tech prototype 

cubic foot muon tomography station (left)

Figure 2 (right): Visualization of the voxel 

grid inside the station. The green voxels are 

more likely to be clear since a straight track 

passes through them, while the red voxel is 

less likely since it contains a scattering point.

http://www.cbp.gov/border-security/ports-entry/cargo-security
http://scienceandglobalsecurity.org/archive/sgs16morris.pdf
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Data Management for Raw Acquisition Data: 
remi.lbl.gov
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Improving Efficiency with GPU: MLEM with 
Simulation data
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2562 x 60 

SPECT 

sinogram with 

1 pinhole

Ray tracing 

(sec)

Average per 

iteration 

(sec)

Average 

forward 

projection 

(sec)

Average 

back 

projection 

(sec)

Total 

reconstruction 

(sec)

Normalized-

mean-sqr

difference: CPU to 

GPU images

CPU 2.13 5.91286 1.95625 2.8691 1188.41

GPU 0.529756 0.286561 0.0951198 0.110944 60.1003

Ratio CPU/GPU 4.02 20.633 20.56617 25.86 19.773 1.67

1282 x 60 

SPECT 

sinogram with 

4 pinholes

CPU 7.34 3.979 1.564 2.044 49.51 

GPU 0.797533 0.0920357 0.0426326 0.0474005 4.01172 

Ratio CPU/GPU 9.203 43.233 36.685 43.121 12.341 1.65

1282 x 600 CT 
sinogram

CPU 5.32 33.1364 10.169 19.081 340.79

GPU 0.415884 0.818518 0.306646 0.477997 26.88

Ratio CPU/GPU 12.792 40.483 33.16 39.9186 12.678 1.57



Reducing communication with CPU 
improves speed
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Reorganizing data over local memory has further improved a reconstruction time 
from 30.55  sec to 24.84 sec

We plan further improvement by holding more data longer time on local memory 



Thanks
Questions

?
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Contact:   dmitra@cs.fit.edu


